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Celestial Holography proposes a duality between gravitational seattering in asymptotically flat spacetimes
and a CFT living on the celestial sphere.
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Synopsis

The advantage of thig program ig that it reorganizes scattering in terme of symmetries.

[n particular, an <o-dimengional enhancement coming from the agymptotic symmetry group.

The gpontaneous symmetry breaking governg the dynamics of the conformally soft sector.

Today we will show how thig sector encodes signatures of chaog.
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Outline

(. The flat-gbace hologram

¥ S-matrix a¢ bndy correlator
b ==~ dim gym enhancemente

2. Celestial amplitudes
> Rindler evolution and a boost bagie
> The conformally soft gector —

3. Encoding Chaosg

> Dresginge and backreaction
A large-c gector
> Celegtial OTOCs
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Goal: Apply the holographic principle to  A=O quantum gravity.

Plan: Celéetial Holography proposes that the natural dual syetem liveg on the celestial sphere.
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We are interested in seattering in asymptotically flat epacetimes.

I

AN=0 T

s ““\QD/ i
e

dst= -4+ I + du&* +dg*
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Thege gpacetimeg have the same agymptotic caugal structure ag Minkowski epace.

: @ T

In particular magslese excitations enter and exit along null hypersurfaces I = Rx S,
We will refer to this < croge-gection ag the celestial ephere in what follows.
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We can merge agpecte of the two standard precedentg for our hologram...

loutl S linD AdS/CET
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... by pushing our Cauchy slice to seri o prepare the in and out states with operators on the boundary.
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... by pushing our Cauchy slice to seri o prepare the in and out states with operators on the boundary.
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For example taking r— x>, u- fixed the plane wave localizes...

e-lp.x ¥ e*lPDu-lp"r(l'(osm rigyiel

... and we can prepare an m=0 momentum eigenetate with the boundary limit of our bulk operator
smeared on a generator of}f

\ X X
l"l.uw— J(M?E— O‘D’-e I "'ij Qtze P ]
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We need to understand how bulk quantities behave near the boundary. Outgoing radiation is captured by
the metric at large r, fixed u=t-.

dg' = -du* -2dudr + 202 Yg@ Jedz «— Flof —:-# correchions

208 32 o+ Cpde® + 1 Cpde® «D'Cyadudz + D2 Cpdudiv..
To study the phage space and symmetries one needg to

$ pick a convenient gauge

4 specify physical falloffe

< identify recidual trancformationg that pregerve
thege falloffe
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We need to understand how bulk quantities behave near the boundary. Outgoing radiation is captured by
the metric at large r, fixed u=t-.

dg' = -4 - 2dudr + 27 Yz dedz «— Flof /_;.# corvechions
v 208 33 & rCade® + ¢ Cuad2® +D'Coedudz +DPCgdudiv..

To study the phage space and symmetriee one needg to

$ pick a convenient gauge

4 specify physical falloffe

< identify regidual trancformationg that pregerve
thege falloffe
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Regidual diffeomorphieme that preserve the falloffe and act non-trivially on the agymptotic data are part
of the Aeymptotic Symmetry Group.

Allowsed ngmei'vle‘s
Tavial Sbmm%\%

ASG =

The ASG will be much larger than the group of isometrieg of any given gpacetime within thig clags.

Poncore < BMS

# %enem‘cors 1 1o

<> Supertranglationg induce angle-dependent shifte in the time coordinate w&
SlaelEsl \

.
$ Superrotationg extend global conformal trangformationg to local CKVs. \
-a I = Y¥(2) )3*' o DQY%(Z\ .+ ce. H\Q/b

L

—
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Now let's look at different ways of organizing our hologram. (f we Fourier transform our in and out states
we have correlatorg on a null 3-manifold.

[eques
> Connecting in and out

& Null time coordinate

> Charge non-congervation
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we have correlatorg on a null 3-manifold.
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> Connecting in and out

& Null time coordinate
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The Celestial program looke at Rindler evolution of the bulk and boundary. Can we cee that the boost
bagi¢ i a better way of presenting the flat space hologram?

Benefite
> Soft thme are canonical chargeg

> [n and out come together antipodally

> Decoupling of primary descendants
implieg infinite tower of symmetries

’P\‘m&\er = cadial
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The charges in gauge theory are co-dimengion 2. If L lift a path C on the celestial sphere fo a co-dimengion |
hypereurface 27 of the bulk that rune along the generatore of } [ have

—5(1 )= ff)fe* k(2)
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To be more concrete, let ug congider the locus x*=0. Thig gplite the celestial gphere along ite equator.

M

b BT A \—22\
x (u'f("’ L i

ees ) e Y e

The boost image of thie slice sweeps out a foliation of the bulk and boundary that regpects our ability to
quotient by the generators of y

.
= -B.
=

Z-__eJt-\-iC\a
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To be more concrete, let ug congider the locus x*=0. Thig gplite the celestial gphere along ite equator.

M_ «2 z2-2 \- 22
K= (ure, ¢ 22 (BB 122

CL Rl R TR e

The boost image of thie slice sweeps out a foliation of the bulk and boundary that regpects our ability to
quotient by the generators of y

o
= -B.
=

Z:e—-t-t-ic\a
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The energy conjugate to the Rindler time i¢ diagonalized in the celectial bagie. For magglese etateg

v & iij =T (S‘:gduowm-g A(w;,z;’%ﬂ

1 1=\

manifeetly transforme like a correlator of quagi-primary under the Lorentz group.

(S; = ith ».e\;c‘dw.\3
[(C2;+d\m+3i (_éﬁa\h-“m] 2['( A\, 2;,2‘,)

_ n
T +b 0z+b
T(a, 208 8% ) 7

\

Thege get promoted to Viragoro primaries when we couple to gravity.
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The celestial holographic map

loutl 5\in> = <@’T. . @;> 1

nominally neede a continuoug spectrum for each bulk operator.

AR

Thig tunability of A can come in handy.
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Congider the SL(2,C) multiplet structure. A primary state:
Llhh> =L\, w>=0

will have a primary descendant at level-k when:

L L T T = - (et -D(L ) T =0

gimilarly for T-.. When both conditiong are met we get nested primarie:

R
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When we analytically continue o such A we find that the primary descendants decouple, as one would
expect in a radially quantized 20 CFT.

> —h—\

l —-lpv"{( E\ E-—‘?O EJI@*—‘-HE '.L(% '?;\ Z (:I(Z)

n=1-p r(j-n\r(p-l‘n\

We call thie the conformally coft eector. [t containg an infinite tower of symmetry generators.

~ +g -2
= W (e R e e SR G AT
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Indeed +thig radial evolution picture i¢ further borne out by our ability to extract consictent symmetry
algebrag from the OPEx.

I

iy
~ SERAA L) Ty, (722

CABIR) =§, 85 AGIB(Z)
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The CCFT currente corregpond to eymmetry enhancemente in the bulk. These infinitely many symmetrieg
should also constrain black hole evaporation.

V‘l'“\'un\ PCA'IFS
O 1o, :

Hu;.:\d(m:i) Radiation

— N

W

In 2102.03850 we showed that super tranglation dreseing modes capture non-trivial backreaction
effecte and asgociated Lyupanov behavior. Can we carry over what we've learned to CCFT?
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Scattering processes are accompanied by radiation which induces
dynamical vacuum trangitions.

The coft phase gpace includeg paired
Goldetone and memory modes.
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Introducing a horizon enlargeg the 2oft sector of phage gpace.

(-2) BMQ invariance: : gf e ?} i 3

- /

(-2) CPT invariance:
HPS: Black holes have st H:(trl’
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One can congtruct operators invariant under supertranglations by dresing them

Cleci Ly, 2) = G, (=) NP(E\ : UP(ZW = Gﬂilpgm

Which we can conveniently implement via operator valued coordinates

g aress (V,2) = Tin0,2), G=u-5(2)
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However because C5+,5.7#0 we need to decide where the dreseing should be anchored. Defining

o B ~ R (u- A
\[i_:\'__gi- i u_‘gtp\{eu \r)/’-lf’\D'LJci
I

we gee that
[ sieh]is \’raal“’“'“w“\,t/\I (0%+2) A=, 2) = 16782 z-2/)

So that the dregsings account for the Lyapunov behavior ageociated to backreaction effects.

<E®'m(0, ,zﬁ.\ , ®m4f&+,2’,%’\31> il

2 1 1 lav)am )
<®‘iﬂ©}ﬂ><00u+ cu‘\'>

\E Pllﬂ Pcu;\'e- /\(?.}E.’

Page 35/43



Pirsa: 22030018

However because C5+,5.1#0 we need to decide where the dreseing ehould be anchored. Defining

& D o ~ los ~
\Ii:\"'gi- Kl e s gt‘\{eu “qublfi
I

we gee that
[3.2), 2] = Y™ VY MA  (0%2) Alr,2) = 16782 z-2/)

So that the dregsings account for the Lyapunov behavior ageociated to backreaction effects.

<E®'lﬂ(0— /2,_?-\ ] ch:‘t (&+}2!t?’\31> Wi

2 1 o L‘-"-\')/lM )
<®‘[06}r\><©‘o\¢+ m+>

\6 Pllﬂ PQUJ\'Q /\(?.}E.’
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Can we identify cimilar behavior in CCFT? The fact that radial evolution in the CCFT maps to time
evolution for a Rinder obgerver in the bulk hinte at a way out.

it

Shockwave chifte can have dragtic effecte from the perepective of a fiducial Rinder observer.
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The questions we've encountered:
P What ie the etate of the Rinder horizon?

> What ig the central charge?

> How chould we analytically continue z, z?

quide the computationg in 220101630. Here we will follow on a particular route that focuses on

the celestial backreaction ageociated to superrotationg.
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Thig algebra can be reached from an [nonu-Wigner contraction of a pair of Viragoro algebrag with
divergent central charge

ELn!Lm_J = (0-m) Ln-t-m L_l,'g' M(m”l)gm-m

via the identification

+ |
Eleld o8

We will eee that & hag a natural interpretation ag an (R cutoff
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Recall super rotatione preserve the leaves of a hyperbolic foliation of &> . Finitely superrotated vacua
look like Bariadog geometries on these leaves.

ds' = —drll + r)"(cﬂpl*- (s «e M) 2Y,5d=dz + (I- &) (63;3-21"' 9% 52')
4= It e BRI« (ot + Vv ) 2¥gzdade - (- M) (07 8+ 0 82" (©

If we introduced an (R cutoff by setting the (A)dS radiue to R = we
would have two strese tengorg.

EL%\ , L-:_—_nj = (n—m} Ltn-t-m o ’fl_f' M(M"l)%n+m
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Restricting to a sector of operatore that commute with the L, gives a system with (arge c. Thie sector
effectively includes a backreaction such that near a local operator the Goldstone mode Z(z) behaves ag

d":‘fs gZ,‘zzS = "2‘1, o i ZI—ZEEH

giving a defect on the celestial ephere. We can uge thig to evaluate monodromies when we move
operatore around one another for complexified

2m[ =t

:
@5 e T ileemsnla )

T Bt

Im(7)

Which we interpret ae Lyapunov behavior of Rinder time OTOCs.

B I
S
0 Re(r)

CAG), BEY ] = 2mie e &5 0 B O AW,
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Thig geometric derivation can be backed up by methods that uge features of 20 conformal blocks at
large ¢. Understanding the origin of a temperature for the radial evolution requireg ue to congider an
analytic continuation to the celestial torus.

We gee that we can still run into interesting questiong in the ‘simplest’ sectore...

> What repregentation?
> Role of IR regulatore?
> Behavior under analytic continuation?

And have a growing checklist for a good toy model...

P> Viragoro symmetry
b Wueo gymmetry
B Maximal quantum chaos
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