Title: Unbiasing Fermionic Quantum Monte Carlo with a Quantum Computer
Speakers: William Huggins

Series. Perimeter Institute Quantum Discussions

Date: February 23, 2022 - 11:00 AM

URL.: https://pirsa.org/22020066

Abstract: Many-electron problems pose some of the greatest challenges in computational science, with important applications across many fields of
modern science. Fermionic quantum Monte Carlo (QMC) methods are among the most powerful approaches to these problems. However, they can
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Projector Monte Carlo
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The electronic structure problem

We have a Hamiltonian
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The Hamiltonian encodes the physics

The T(R)m terms and the V{R]m,h terms together specify the problem, with space
already discretized.

The ground state problem

Often the ground state is the only one with signficant occupation at room temperature.
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Imaginary time evolution

Project to the ground state

For any [tinitial) With non-zero overlap with the ground state,
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lim e Winitial ) X [Wground/ -
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Imaginary time evolution
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Projector Monte Carlo

Walkers
We represent represent |¢)(7)) as an ensemble of simple “walkers",

(7)) Z wi(T) |di(T)) .

;

Propagator

We update the walkers using an approximation to the imaginary time propagator,
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Projector Monte Carlo

Many different realizations
Diffusion Monte Carlo, Green's Function Monte Carlo, Full Configuration Interaction
Quantum Monte Carlo, Auxiliary Field Quantum Monte Carlo (AFQMC). ..

Sometimes they work well
Bose-Einstein condensation of Helium 4 into a superfluid, unfrustratedgbosons, Hubbard

model at half-filling

Bose-Einstein condensation of Helium 3 into a superfluid, quantum chemistry, Hubbard

model away from half-filling, most systems with fermions
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Projector Monte Carlo

Many different realizations
Diffusion Monte Carlo, Green's Function Monte Carlo, Full Configuration Interaction
Quantum Monte Carlo, Auxiliary Field Quantum Monte Carlo (AFQMC). ..

Sometimes they work well
Bose-Einstein condensation of Helium 4 into a superfluid, unfrustrated bosons, Hubbard
model at half-filling

Bose-Einstein condensation of Helium 3 into a superfluid, quantum chemistry, Hubbard

model away from half-filling, most systems with fermions

= Collapse to the bosonic solution

= Catastrophic cancellation of contributions with different signs/phases
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Auxiliary field quantum Monte Carlo

Walkers
In AFQMC, the walkers are Slater determinants.

Propagator
We use an approximation to the imaginary time evolution operator that maps Slater

determinants to Slater determinants.
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Auxiliary field quantum Monte Carlo

Rewrite the Hamiltonian

H taaala ‘l DY, 2 analac = Y tesala
Pqdpdq T 5 pqrsdpdgd,ds pqg9pdq
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Trotter expansion

We take a Trotter expansion of e &H.

The Hubbard-Stratonovich transformation
e2vi — _1 / e eV Axve gy
'\,-"2: .
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The sign problem in AFQMC is a phase problem

Multiple solutions
Imaginary time evolution converges to the

ground state up to an arbitrary phase,

W |/
€ |"- ground/ -

The phase problem
Our ensemble average corresponds to a linear
combination of these solution. The phases

distribute uniformly over time.
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The sign problem in AFQMC is a phase problem

Multiple solutions
Imaginary time evolution converges to the =

ground state up to an arbitrary phase,

exact _
unconstrained
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The phase problem
Our ensemble average corresponds to a linear
combination of these solution. The phases

distribute uniformly over time.
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The phaseless approximation

Trial wavefunction

%

Ytrial/ =~ |%ground/

Biasing the random walk
With a trial wavefunction we can bias the random walk and break the symmetry.

We force the overlap between the walker and the trial wavefunction to be positive,

'-.E-J'J'(r) Wirial) & B
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The phaseless approximation

Impact of the trial wavefunction
AFQMC energies are usually much better than
the bare trial wavefunction energies.

AFQMC is exact in the limit where the trial

wavefunction iIs exact.
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The phaseless approximation

Impact of the trial wavefunction
AFQMC energies are usually much better than

the bare trial wavefunction energies.

AFQMC is exact in the limit where the trial

wavefunction is exact.

Classical trial wavefunctions
Classically, we often use a single determinant as
a trial wavefunction so that the overlap

evaluation is efficient.
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The phaseless approximation

Impact of the trial wavefunction
AFQMC energies are usually much better than

the bare trial wavefunction energies.

AFQMC is exact in the limit where the trial

wavefunction is exact.

Classical trial wavefunctions
Classically, we often use a single determinant as
a trial wavefunction so that the overlap

evaluation is efficient.
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Quantum trial wavefunctions

Quantum trial wavefunctions
With a quantum computer, we can efficiently
approximate the overlap for a much wider range

of trial wavefunctions.

Unitary Coupled Cluster

Tensor Networks
Adiabatic State Preparation

Hardware Efficient Ansatz
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Quantum trial wavefunctions

Quantum trial wavefunctions
With a quantum computer, we can efficiently
approximate the overlap for a much wider range

of trial wavefunctions.

= Unitary Coupled Cluster
Tensor Networks

Adiabatic State Preparation

Hardware Efficient Ansatz
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Shadow Tomography
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Shadow tomography’

= T[ake a copy of your input state p

= Apply a randomly chosen circuit U; from an ensemble {{ (Clifford circuits here)
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Shadow tomography’

Take a copy of your input state p

Apply a randomly chosen circuit U; from an ensemble U (Clifford circuits here)

Measure in the computational basis to obtain the bitstring b;

Rinse and repeat, saving a record of the U;s and b;s (the classical shadow)

‘Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few
measurements. Nat. Phys. 16, 1050-1057 (2020)
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Shadow tomography

Measurement as an invertible quantum channel

Shadow tomography with Clifford circuits defines an invertible quantum channel M,

M(p) :=Eyociany D (b|UpU'|b) UT |bYb| U.
be{0,1}V

The inverse has a simple closed form,

M™YAY = (2 - 1A-L

The classical shadow of p is an approximate reconstruction of p obtained by sampling,

p=Eywaeyy . (blUpU'|b) M~ (UT|b)b| V).
be{0,1}V
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Shadow tomography

Shadow norm

The number of samples we require to estimate M different observables, each to within a
precision ¢, scales as

; 2
|Gg( M)max;|| O;||shadow/ €

For the Clifford group on N qubits,

|O:| |3h.JrJow <3 tf’( OE)

Scaling

We only need to perform O(log(M)e?) measurements to estimate the overlap of the
trial wavefunction with M different Slater determinants, each to within a precision e.
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The protocol

Collect the classical shadow
= Characterize the state 1IF’ 0) 4 \}1 Userial)

= We can approximate (@|t4)) using expectation values of

A @ N Wtrial| |f-11rin|.}':-:'r-’| and P = | X Uerial P erial L@

Offline AFQMC calculation
= Nearly standard AFQMC calculation
= All quantities expressed in terms of wavefunction overlaps
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The protocol
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Reasons for hope

Modest measurement cost
No feedback loop between classical and quantum processors
Biasing a random walk

Inherent noise resilience
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Eight qubit experiment

The system

We consider a toy version of a hard problem, a square arrangement of four Hydrogen
atoms. We consider both an STO-3G basis set (4 orbitals / 8 qubits) and a cc-pVQZ
basis set (120 orbitals / 240 qubits).

The ansatz
We start with a well-studied ansatz known as Perfect Pairing:

a Illllurihl'll‘-\.
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[

Then we add several layers of hardware-efficient gates and an offline orbital rotation.
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Eight qubit experiment
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Eight qubit experiment

Observations
= The energy on the left would be
exact without noise,
= All experiments are far from
chemical accuracy (pale orange
band)
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Eight qubit experiment

Observations
= The energy on the left would be
exact without noise.
= All experiments are far from
chemical accuracy (pale orange
band).
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Eight qubit experiment

Observations

= The energy on the left would be
exact without noise.

= All experiments are far from
chemical accuracy (pale orange
band).

» QC-AFQMC energies are all within
chemical accuracy.

» QC-AFQMC suppresses the

variation between experiments.
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Twelve and sixteen qubit experiments

Twelve qubits
» Nitrogen dimer potential energy surface

» cc-PVTZ basis (60 orbitals)
= Perfect pairing ansatz

Sixteen qubits
= Diamond crystal
= Two atom unit cell
= Finite size effects
» DZVP-GTH basis (26 orbitals)

= Perfect pairing ansatz

[] Quantum Al




Twelve qubit experiment

relative energy (kcal/mol)
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Observations

= The experimental
QC-AFQMC energies
(blue circles) are close to
the noiseless QC-AFQMC
energies (black squares).

» QC-AFQMC produces
energies competetive with
other state-of-the-art
approaches.




Twelve and sixteen qubit experiments
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Observations

The experimental
QC-AFQMC energies
(blue circles) are close to
the noiseless QC-AFQMC
energies (black squares).
QC-AFQMC produces
energies competetive with
other state-of-the-art
approaches.




Thank You
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