Title: Harish-Chandra bimodules in complex rank

Speakers: Aleksandra Utiralova

Series: Mathematical Physics

Date: February 11, 2022 - 1:30 PM

URL: https://pirsa.org/22020052

Abstract: Deligne tensor categories are defined as an interpolation of the categories of representations of groups  $GL_n$ ,  $O_n$ ,  $Sp_{2n}$  or  $S_n$  to the complex values of the parameter n. One can extend many classical representation-theoretic notions and constructions to this context. These complex rank analogs of classical objects provide insights into their stable behavior patterns as n goes to infinity.

I will talk about some of my results on Harish-Chandra bimodules in Deligne categories. It is known that in the classical case simple Harish-Chandra bimodules admit a classification in terms of W-orbits of certain pairs of weights. However, the notion of weight is not well-defined in the setting of Deligne categories. I will explain how in complex rank the above-mentioned classification translates to a condition on the corresponding (left and right) central characters.

Another interesting phenomenon arising in complex rank is that there are two ways to define Harish-Chandra bimodules. That is, one can either require that the center acts locally finitely on a bimodule M or that M has a finite K-type. The two conditions are known to be equivalent for a semi-simple Lie algebra in the classical setting, however, in Deligne categories that is no longer the case. I will talk about a way to construct examples of Harish-Chandra bimodules of finite K-type using the ultraproduct realization of Deligne categories.

Zoom Link: https://pitp.zoom.us/j/93951304913?pwd=WVk1Uk54ODkyT3ZIT2ljdkwxc202Zz09



# Harish-Chandra bimodules in complex rank

Alexandra Utiralova

Massachusetts Institute of Technology

A. Utiralova (MIT)

H-C bimodules in complex rank

1/25

# Structure of the talk

### References

I will cover results from two of my preprints arXiv:2002.01555 and arXiv:2107.03173 .

### I. Deligne categories

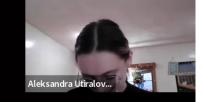
- Definition and properties.
- Ultraproduct construction.

### II. Harish-Chandra bimodules

- Classical case.
- Central characters of Harish-Chandra bimodules in Deligne categories.
- Harish-Chandra bimodules of finite K-type.

#### A. Utiralova (MIT)

H-C bimodules in complex rank



# Deligne categories

#### Intuitive definition

The categories  $\operatorname{Rep}(GL_t)$  are interpolations of the categories of representations of groups  $GL_n$  to complex values of n.

#### Definition

 $\operatorname{Rep}(GL_t)$  is the Karoubi envelope of the symmetric rigid monoidal category generated by a single object V of dimension t, such that  $\operatorname{End}(V^{\otimes k}) \simeq \mathbb{C}[S_k]$  and  $\operatorname{Hom}(V^{\otimes k}, V^{\otimes l}) = 0$  unless k = l.

- Karoubi envelope → Formally adjoin images of all idempotents and finite direct sums.
- V has dim  $t \rightsquigarrow ev \circ \tau \circ coev : \mathbb{1} \to V \otimes V^* \to V^* \otimes V \to \mathbb{1}$  is the multiplication by t.
- Every indecomposable object is a direct summand in  $[r, s] := V^{\otimes r} \otimes (V^*)^{\otimes s}$ .

A. Utiralova (MIT)

H-C bimodules in complex rank





# Deligne categories

#### Remark

I will limit myself to considering only the type A case, that is the categories  $\operatorname{Rep}(GL_t)$ .

All the definitions and results can be also generalized for  $\text{Rep}(O_t)$ and  $\text{Rep}(Sp_{2t})$  (was done jointly with Serina Hu).

- Hom([r, s], [r', s']) = Hom( $V^{\otimes r+s'}, V^{\otimes r'+s}$ ) = 0 unless r+s'=r'+s.
- End([r,s])  $\simeq B_{r,s}(t)$  walled Brauer algebra .

There is an injective map  $i : \mathbb{C}[S_r \times S_s] \to B_{r,s}(t)$  (because  $\mathbb{C}[S_k] \simeq \operatorname{End}(V^{\otimes k}) \simeq \operatorname{End}((V^*)^{\otimes k})$ ).

It has a splitting  $\pi : B_{r,s}(t) \to \mathbb{C}[S_r \times S_s].$ 

A. Utiralova (MIT)

H-C bimodules in complex rank



# Indecomposable objects

We need to classify primitive idempotents in  $B_{r,s}(t)$ .

#### Theorem (Comes, Wilson)

For a partition  $\nu \vdash k$  let  $z_{\nu}$  denote the corresponding primitive idempotent in  $\mathbb{C}[S_k]$ .

For any bipartition  $(\lambda, \mu)$  with  $\lambda \vdash r, \mu \vdash s$  there exists a unique primitive idempotent  $e_{\lambda,\mu} \in B_{r,s}(t)$  such that  $\pi(e_{\lambda,\mu}) = z_{\lambda} \otimes z_{\mu}$ . And this gives the full classification of primitive idempotents in  $B_{r,s}(t)$ .

### Corollary

Indecomposable objects in  $\operatorname{Rep}(GL_t)$  are labeled by bipartitions  $(\lambda, \mu) \mapsto V_{\lambda,\mu}$ . If  $\lambda \vdash r, \mu \vdash s$ , then  $V_{\lambda,\mu}$  is a direct summand of [r, s].

A. Utiralova (MIT)

H-C bimodules in complex rank



# Indecomposable objects

We need to classify primitive idempotents in  $B_{r,s}(t)$ .

#### Theorem (Comes, Wilson)

For a partition  $\nu \vdash k$  let  $z_{\nu}$  denote the corresponding primitive idempotent in  $\mathbb{C}[S_k]$ .

For any bipartition  $(\lambda, \mu)$  with  $\lambda \vdash r, \mu \vdash s$  there exists a unique primitive idempotent  $e_{\lambda,\mu} \in B_{r,s}(t)$  such that  $\pi(e_{\lambda,\mu}) = z_{\lambda} \otimes z_{\mu}$ . And this gives the full classification of primitive idempotents in  $B_{r,s}(t)$ .

### Corollary

 $\begin{array}{ll} \text{Indecomposable objects in } \operatorname{Rep}(GL_t) \text{ are labeled by bipartitions} \\ (\lambda,\mu)\mapsto V_{\lambda,\mu} \ . & V_{\lambda,\mu} \subset \ \begin{subarray}{c} \begin{subarray}{c} \end{subarray} \lambda & \end{subarray} V & \end{subarray} \\ \text{If } \lambda\vdash r,\mu\vdash s, \ \text{then } V_{\lambda,\mu} \ \text{is a direct summand of } [r,s] \ . \end{array}$ 

A. Utiralova (MIT)

H-C bimodules in complex rank



# Properties of Deligne categories

• The universal property. Let  $\mathcal{D}$  be a symmetric tensor category. Then

 ${F: \operatorname{Rep}(GL_t) \to \mathcal{D}} \leftrightarrow {X \in \mathcal{D} \text{ of dimension } t}$ 

via  $F \mapsto F(V) = X$ .

• Corollary. If  $t = n \in \mathbb{Z}_{>0}$  we have a symmetric tensor functor  $F : \operatorname{Rep}(GL_t) \to \operatorname{Rep} GL(n, \mathbb{C})$ , s.t.  $F(V) = V^{(n)}$  (the tautological *n*-dimensional representation ). Suppose  $\operatorname{len}(\lambda) = l$ ,  $\operatorname{len}(\mu) = m$  and  $n \ge l + m$ . Define

$$[\lambda,\mu]_n \coloneqq (\lambda_1,\ldots,\lambda_l,0,\ldots,0,-\mu_m,\ldots,-\mu_1) \in \Lambda^+(\mathfrak{gl}_n).$$

Then for  $t = n \ge l + m$  we have  $F(V_{\lambda,\mu}) = V_{[\lambda,\mu]_n}^{(n)}$  (and if t = n < l + m then  $F(V_{\lambda,\mu}) = 0$  ).

•  $\operatorname{Rep}(GL_t)$  is abelian (and semisimple) if and only if  $t \notin \mathbb{Z}$ .

H-C bimodules in complex rank

# Properties of Deligne categories

• The universal property. Let  $\mathcal{D}$  be a symmetric tensor category. Then

$$\{F : \operatorname{Rep}(GL_t) \to \mathcal{D}\} \leftrightarrow \{X \in \mathcal{D} \text{ of dimension } t\}$$
  
via  $F \mapsto F(V) = X$ .  
$$\operatorname{Rep}(GL_t) \xrightarrow{\rightarrow} \operatorname{Rep}(GL(m^*t, m_t))$$

• Corollary. If  $t = n \in \mathbb{Z}_{>0}$  we have a symmetric tensor functor  $F : \operatorname{Rep}(GL_t) \to \operatorname{Rep} GL(n, \mathbb{C})$ , s.t.  $F(V) = V^{(n)}$  (the tautological *n*-dimensional representation ). Suppose  $\operatorname{len}(\lambda) = l$ ,  $\operatorname{len}(\mu) = m$  and  $n \ge l + m$ . Define

$$[\lambda,\mu]_n \coloneqq (\lambda_1,\ldots,\lambda_l,0,\ldots,0,-\mu_m,\ldots,-\mu_1) \in \Lambda^+(\mathfrak{gl}_n).$$

Then for  $t = n \ge l + m$  we have  $F(V_{\lambda,\mu}) = V_{[\lambda,\mu]_n}^{(n)}$  (and if t = n < l + m then  $F(V_{\lambda,\mu}) = 0$  ).

•  $\operatorname{Rep}(GL_t)$  is abelian (and semisimple) if and only if  $t \notin \mathbb{Z}$ .

H-C bimodules in complex rank

6 / 25

Aleksandra Utira

#### Definition

An ultrafilter  $\mathcal{F}$  on  $S \neq \emptyset$  is a set of subsets of S, satisfying the following properties:

- For any  $U_1, U_2 \in \mathcal{F}$  we have  $U_1 \cap U_2 \in \mathcal{F}$ ,
- For any  $U \subset S$  exactly one of U, S U is in  $\mathcal{F}$ ,
- If  $U_1 \subset U_2$  and  $U_1 \in \mathcal{F}$  then  $U_2 \in \mathcal{F}$ .

**Remark.** Ultrafilters are the same as  $\mathbb{F}_2$ -valued characters of the ring of  $\mathbb{F}_2$ -valued functions on S.

### Example

Fix some  $s \in S$ . A **principal** ultrafilter  $\mathcal{F}_s$  consists of all subsets of S containing s.

A. Utiralova (MIT)

H-C bimodules in complex rank



Let us fix a non-principal ultrafilter  $\mathcal{F}$  on  $\mathbb{N}$ .

### Definition

For a collection of nonempty sets  $X_n$ ,  $n \in \mathbb{N}$  we can define their ultraproduct as follows

$$\prod_{\mathcal{F}} X_n = \prod X_n / \sim,$$

where we say  $(x_1, x_2, x_3, \ldots) \sim (x'_1, x'_2, x'_3, \ldots)$  if  $x_k = x'_k$  for almost all k, that is for all k in some  $U \in \mathcal{F}$ .

A. Utiralova (MIT)

H-C bimodules in complex rank

Aleksandra Utiralov...

Let us fix a non-principal ultrafilter  $\mathcal{F}$  on  $\mathbb{N}$ .

#### Definition

For a collection of nonempty sets  $X_n$ ,  $n \in \mathbb{N}$  we can define their ultraproduct as follows

$$\prod_{\mathcal{F}} X_n = \prod X_n / \sim,$$

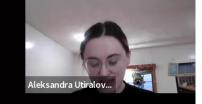
where we say  $(x_1, x_2, x_3, \ldots) \sim (x'_1, x'_2, x'_3, \ldots)$  if  $x_k = x'_k$  for almost all k, that is for all k in some  $U \in \mathcal{F}$ .

### Łoś's theorem, roughly

Any first order language statement that is true for almost all  $X_n$  is also true for  $\prod_{\mathcal{F}} X_n$ .

A. Utiralova (MIT)

H-C bimodules in complex rank



#### Example

If all  $X_n$  are groups/algebras/fields then so is  $\prod_{\mathcal{F}} X_n$ . If  $X_n$  are vector spaces over  $\mathbb{F}_n$  then  $\prod_{\mathcal{F}} X_n$  is a vector space over  $\prod_{\mathcal{F}} \mathbb{F}_n$ .

#### Non-example

If  $V_n$  are finite-dimensional vector spaces then  $\prod_{\mathcal{F}} V_n$  is not necessarily finite-dimensional. However, if the dimensions of  $V_n$  are universally bounded, it will be.

### Example

Take  $\mathbb{F}_n = \overline{\mathbb{Q}}$ . Then  $\prod_{\mathcal{F}} \mathbb{F}_n$  is an algebraically closed field of characteristic zero and cardinality continuum. Therefore, by Steinitz's theorem it is (non-canonically) isomorphic to  $\mathbb{C}$ .

#### A. Utiralova (MIT)

H-C bimodules in complex rank



#### Definition

For a collection of small categories  $C_n$ ,  $n \in \mathbb{N}$  we can define the category  $C = \prod_{\mathcal{F}} C_n$  via  $Ob \ C = \prod_{\mathcal{F}} Ob \ C_n$  and for any pair of objects  $X = \prod_{\mathcal{F}} X_n, Y = \prod_{\mathcal{F}} Y_n$  we define  $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \prod_{\mathcal{F}} \operatorname{Hom}_{\mathcal{C}_n}(X_n,Y_n).$ 

### Theorem (Deligne)

Let  $t \in \mathbb{C}$  be transcendental. The category  $\operatorname{Rep}(GL_t)$  is isomorphic to the Karoubi envelope of the symmetric rigid monoidal subcategory in  $\prod_{\mathcal{F}} \operatorname{Rep} GL(n, \overline{\mathbb{Q}})$  generated by the object  $V = \prod_{\mathcal{F}} V^{(n)}$ , where  $V^{(n)}$  is the tautological *n*-dimensional representation of  $GL(n, \overline{\mathbb{Q}})$ . The  $\mathbb{C}$ -linear structure on  $\operatorname{Rep}(GL_t)$ comes from choosing an isomorphism  $\prod_{\mathcal{F}} \overline{\mathbb{Q}} \simeq \mathbb{C}$  with  $(1, 2, 3, \ldots) \mapsto t \in \mathbb{C}$ .

A. Utiralova (MIT)

H-C bimodules in complex rank



#### Definition

For a collection of small categories  $C_n$ ,  $n \in \mathbb{N}$  we can define the category  $C = \prod_{\mathcal{F}} C_n$  via  $Ob \ C = \prod_{\mathcal{F}} Ob \ C_n$  and for any pair of objects  $X = \prod_{\mathcal{F}} X_n, Y = \prod_{\mathcal{F}} Y_n$  we define  $\operatorname{Hom}_{\mathcal{C}}(X, Y) = \prod_{\mathcal{F}} \operatorname{Hom}_{\mathcal{C}_n}(X_n, Y_n).$ 

### Theorem (Deligne)

Let  $t \in \mathbb{C}$  be transcendental. The category  $\operatorname{Rep}(GL_t)$  is isomorphic to the Karoubi envelope of the symmetric rigid monoidal subcategory in  $\prod_{\mathcal{F}} \operatorname{Rep} GL(n, \overline{\mathbb{Q}})$  generated by the object  $V = \prod_{\mathcal{F}} V^{(n)}$ , where  $V^{(n)}$  is the tautological *n*-dimensional representation of  $GL(n, \overline{\mathbb{Q}})$ . The  $\mathbb{C}$ -linear structure on  $\operatorname{Rep}(GL_t)$ comes from choosing an isomorphism  $\prod_{\mathcal{F}} \overline{\mathbb{Q}} \simeq \mathbb{C}$  with  $(1, 2, 3, \ldots) \mapsto t \in \mathbb{C}$ .

I will assume that t is transcendental from now on. A. Utiralova (MIT) H-C bimodules in complex rank



# Lie algebra $\mathfrak{gl}_t$

We can define the Lie algebra  $\mathfrak{gl}_t = V \otimes V^* = \prod_{\mathcal{F}} \mathfrak{gl}_n$  in  $\operatorname{Rep}(GL_t)$ . There is a **natural** action of  $\mathfrak{gl}_t$  on every object of  $\operatorname{Ind} \operatorname{Rep}(GL_t)$ .

We can define  $U = U(\mathfrak{gl}_t)$  as the quotient of the tensor algebra  $T(\mathfrak{gl}_t)$  by the standard commutator relations. It has a PBW filtration  $F^k U$  coming from the filtration of  $T(\mathfrak{gl}_t)$ . We have  $F^k U = \prod_{\mathcal{F}} F^k U(\mathfrak{gl}_n)$ .

Moreover, if  $\mathcal{Z}$  is the center of U (i.e.  $\mathcal{Z} = \text{Hom}(\mathbb{1}, U)$ ), we have  $F^k \mathcal{Z} = \prod_{\mathcal{F}} F^k \mathcal{Z}(U(\mathfrak{gl}_n))$ . Therefore,  $\mathcal{Z} = \mathbb{C}[z_1, z_2, z_3, \ldots]$  with deg  $z_k = k$ .

Let me specify a particular choice of generators in  $\mathcal{Z}$ . We take  $z_i = \prod_{\mathcal{F}} z_i^{(n)}$ , where  $z_i^{(n)}$  acts on  $M_{\chi}$  via  $\sum_{l=1}^n \chi_l^i$ .

Given a central character  $\theta : \mathbb{Z} \to \mathbb{C}$ , define the **exponential** generating function:  $\theta(u) = 1 + \sum_{i \ge 1} \frac{1}{i!} \theta(z_i) u^i$ .

A. Utiralova (MIT)

H-C bimodules in complex rank



# U-bimodules

Let  $\mathcal{C}$  be either  $\operatorname{Rep}(GL_t)$  or  $\operatorname{Rep}_{\mathbb{C}} G$  for some reductive group G.

Let  $\mathfrak{g} \in \mathcal{C}$  be the corresponding Lie algebra object. It acts **naturally** on all objects of Ind  $\mathcal{C}$ .

#### Remark

We can define this for any symmetric tensor category  $\mathcal{C}$ .  $\triangleright$ 

### Notations

Let  $\mathfrak{g}^{op}$  be the opposite Lie algebra. Let  $U^2 \coloneqq U(\mathfrak{g}) \otimes U(\mathfrak{g}^{op})$ ,  $\mathcal{Z}^2 = \mathcal{Z} \otimes \mathcal{Z} = \mathcal{Z}(U^2)$ . Let  $\mathfrak{k} \simeq \mathfrak{g} \subset \mathfrak{g} \oplus \mathfrak{g}^{op}$  be the (anti)diagonal subalgebra. Then we can consider any  $U^2$ -module  $Y \in \operatorname{Ind} \mathcal{C}$  as a U-bimodule and  $Y|_{\mathfrak{k}} = Y^{\operatorname{ad}}$ .

A. Utiralova (MIT)

H-C bimodules in complex rank

# $\ensuremath{\mathfrak{k}}\xspace$ -algebraic bimodules

### Definition

We say that a *U*-bimodule Y in Ind C is **\mathfrak{k}-algebraic** if the action of  $\mathfrak{k}$  on Y coincides with the **natural** action.

#### Lemma

 $\{\mathfrak{k}\text{-algebraic bimodules}\} \leftrightarrow \{\text{left } U\text{-modules in } \mathrm{Ind}\,\mathcal{C}\}.$ 

### Definition

*U*-bimodule  $Y \in \text{Ind } \mathcal{C}$  is called **finitely-generated** if it is a quotient of  $U \otimes X \otimes U$  for some  $X \in \mathcal{C}$ . We say Y is generated by X.

2

13/25

### Example

For any  $X \in \mathcal{C}$  let  $\Phi_X = X \otimes U$ . Then  $\Phi_X^{\mathrm{ad}} = X \otimes U^{\mathrm{ad}} = X \otimes S(\mathfrak{g})$ , so  $\Phi_X$  is  $\mathfrak{k}$ -algebraic. And it is finitely generated as it is a quotient of  $U \otimes X \otimes U$ .

A. Utiralova (MIT) H-C bimodules in complex rank



# Harish-Chandra bimodules

### Question

Now, how do we define a Harish-Chandra bimodule in C?

There are two natural ways to do this. Let  $Y \in \text{Ind } \mathcal{C}$  be a finitely generated  $\mathfrak{k}$ -algebraic bimodule.

- We can ask that  $[Y^{\mathrm{ad}} : X] < \infty$  for any  $X \in \mathcal{C}$ , or
- 2 We can ask that  $\mathbb{Z}^2$  acts finitely on Y (that is  $\operatorname{Ann}_{\mathbb{Z}^2}(Y)$  is an ideal of finite codimension).

#### Lemma

Condition 1 implies condition 2.

### Proof.

 $\mathcal{Z}^2$  acts on  $[Y:X] := \operatorname{Hom}_{\operatorname{Ind} \mathcal{C}}(X, Y^{\operatorname{ad}})$ . Since it is finite dimensional,  $\dim(\mathcal{Z}^2/\operatorname{Ann}_{\mathcal{Z}^2}[Y:X]) < \infty$ . Now, if X generates  $Y, \operatorname{Ann}_{\mathcal{Z}^2}(Y) = \operatorname{Ann}_{\mathcal{Z}^2}[Y:X]$ .

A. Utiralova (MIT)

H-C bimodules in complex rank



# Difference between classical and complex rank cases

### Corollary of Kostant's theorem

If  $C = \operatorname{Rep}_{\mathbb{C}} G$  then condition **2** implies condition **1**.

### Definition

We say that Y is a **Harish-Chandra bimodule** if it satisfies condition 2. Denote by  $\mathcal{HC}$  the corresponding category.

#### Definition

If Y satisfies condition  $\mathbf{1}$ , we say that it is a Harish-Chandra bimodule of finite K-type.

#### Example

Let  $\theta : \mathbb{Z} \to \mathbb{C}$  be some central character of  $U(\mathfrak{gl}_t)$  and let  $U_{\theta} \coloneqq U/\operatorname{Ker}(\theta)U$ . Then  $U_{\theta} \in \mathcal{HC}$ , but is not of finite K-type.

A. Utiralova (MIT)

H-C bimodules in complex rank





# Central characters

Because of condition 2, we have a block decomposition for  $\mathcal{HC}$ :

$$\mathcal{HC} = \bigoplus \widetilde{\mathcal{HC}}(\theta_1, \theta_2),$$

16/25

where  $\widetilde{\mathcal{HC}}(\theta_1, \theta_2)$  is the subcategory on which  $\mathcal{Z}^2 = \mathcal{Z} \otimes \mathcal{Z}$  acts with generalized central character  $\theta_1 \otimes \theta_2$ .

#### Question

For which pairs  $(\theta_1, \theta_2)$  is the category  $\widetilde{\mathcal{HC}}(\theta_1, \theta_2)$  non-zero?

### Remark

Let  $\mathcal{HC}(\theta_1, \theta_2)$  be the subcategory on which  $\mathbb{Z}^2$  acts via  $\theta_1 \otimes \theta_2$ . It is enough to answer the questions for these categories.

#### Lemma

Any object Y in  $\mathcal{HC}(\theta_1, \theta_2)$  is a quotient of  $\Phi_X(\theta_2) = X \otimes U_{\theta_2}$ .

H-C bimodules in complex rank



# Classification of central characters. Classical case

#### The answer in the classical case

Let  $\mathcal{C} = \operatorname{Rep}_{\mathbb{C}} G$ . Then  $\mathcal{HC}(\theta_1, \theta_2)$  is nonzero if and only if there exist Verma modules  $M_{\chi_1}, M_{\chi_2}$ , such that  $\mathcal{Z}$  acts via  $\theta_i$  on  $M_{\chi_i}$  and  $\chi_1 - \chi_2 \in \Lambda(G)$ .

### Idea of proof

Any module is a quotient of  $\Phi_X(\theta_2)$ . If  $\mathcal{Z}$  acts via  $\theta_2$  on  $M_{\chi}$  then

$$\Phi_X(\theta_2) = X \otimes U_{\theta_2} \hookrightarrow \operatorname{Hom}_{\mathbb{C}}(M_{\chi}, X \otimes M_{\chi}),$$

and  $X \otimes M_{\chi}$  has filtration by  $M_{\chi+\lambda}$ , where  $\lambda \in \Lambda(G)$  are weights of X.

A. Utiralova (MIT)

H-C bimodules in complex rank

17/25

Page 22/28

Aleksandra Ut

# Classification of central characters. Complex rank

Let  $\mathcal{C} = \operatorname{Rep}(GL_t)$ .

### Main Theorem

The category  $\mathcal{HC}(\theta_1, \theta_2)$  is non-zero if and only if

$$\theta_1(u) - \theta_2(u) = \sum_{i=1}^r (e^{(b_i+1)u} - e^{b_i u}) - \sum_{j=1}^s (e^{(c_j+1)u} - e^{c_j u})$$

for some  $r, s \ge 0$  and  $b_i, c_j \in \mathbb{C}$ .

**Remark.** For  $O_t$  and  $Sp_{2t}$  we have that  $\mathcal{HC}(\theta_1, \theta_2)$  is non-zero if and only if for some  $r \geq 0$  and  $b_i \in \mathbb{C}$ :

$$\theta_1(u) - \theta_2(u) = \sum_{i=1}^r \left( \cosh((b_i + 1)u) - \cosh(b_i u) \right)$$

A. Utiralova (MIT)

H-C bimodules in complex rank



# Idea of proof



- Any bimodule  $Y \in \mathcal{HC}(\theta_1, \theta_2)$  is a quotient of  $\Phi_X(\theta_2) = X \otimes U_{\theta_2}$ . And any X is a quotient of [r, s].
- **2** We want to understand for which  $\theta_1$  the quotient

$$\Phi_X(\theta_1,\theta_2) = (X \otimes U_{\theta_2})_{\theta_1} \coloneqq X \otimes U_{\theta_2}/(z-\theta_1(z))(X \otimes U_{\theta_2})$$

is non-zero (enough to take X = [r, s]).

3 Do this by induction on r + s in the classical setting. Then take the ultraproduct.

Notation. Let  $\eta : \mathfrak{h}^* \to \{\mathcal{Z}(\mathfrak{gl}_n) \to \overline{\mathbb{Q}}\}$  be the map that sends a weight to the corresponding central character.

A. Utiralova (MIT)

H-C bimodules in complex rank

# Idea of proof

#### Example

Let us do the case when [r, s] = [1, 0].

In the classical setting we have  $\Phi_{V^{(n)}}(\theta_2) = V^{(n)} \otimes U_{\theta_2} \subset \operatorname{Hom}_{\overline{\mathbb{Q}}}(M_{\chi}, V^{(n)} \otimes M_{\chi}), \text{ where } \eta(\chi) = \theta_2.$ Thus,  $\theta_1$  for which  $\Phi_{V^{(n)}}(\theta_1, \theta_2)$  is non-zero are  $\eta(\chi + e_i)$  (where  $e_1 \ldots e_n$  are weights of  $V^{(n)}$ ).

• 
$$\eta(\chi + e_i)(z_k^{(n)}) = \sum_{j=1}^n \chi_j^k + (\chi_i + 1)^k - \chi_i^k$$

• so, 
$$\eta(\chi + e_i)(u) - \eta(\chi)(u) = e^{(\chi_i + 1)u} - e^{\chi_i u}$$

Thus, taking the ultraproduct, we get that  $\Phi_V(\theta_1, \theta_2)$  is nonzero only if  $\theta_1(u) - \theta_2(u) = e^{(b+1)u} - e^{bu}$  for some  $b \in \mathbb{C}$ .

A. Utiralova (MIT)

H-C bimodules in complex rank



# Idea of proof

#### Example

Let us do the case when [r, s] = [1, 0].

In the classical setting we have  $\Phi_{V^{(n)}}(\theta_2) = V^{(n)} \otimes U_{\theta_2} \subset \operatorname{Hom}_{\overline{\mathbb{Q}}}(M_{\chi}, V^{(n)} \otimes M_{\chi})$ , where  $\eta(\chi) = \theta_2$ . Thus,  $\theta_1$  for which  $\Phi_{V^{(n)}}(\theta_1, \theta_2)$  is non-zero are  $\eta(\chi + e_i)$  (where  $e_1 \ldots e_n$  are weights of  $V^{(n)}$ ).

• 
$$\eta(\chi + e_i)(z_k^{(n)}) = \sum_{j=1}^n \chi_j^k + (\chi_i + 1)^k - \chi_i^k,$$

• so, 
$$\eta(\chi + e_i)(u) - \eta(\chi)(u) = e^{(\chi_i + 1)u} - e^{\chi_i u}$$

Thus, taking the ultraproduct, we get that  $\Phi_V(\theta_1, \theta_2)$  is nonzero only if  $\theta_1(u) - \theta_2(u) = e^{(b+1)u} - e^{bu}$  for some  $b \in \mathbb{C}$ .

### Ultraproduct phenomenon

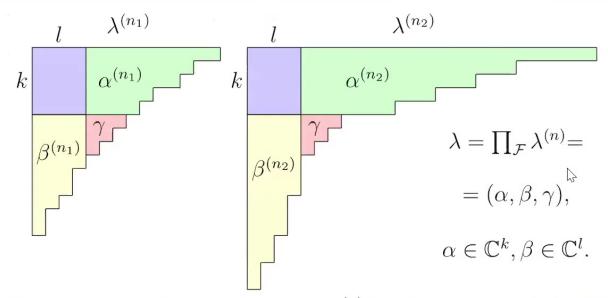
It turns out that we can get any value of  $b \in \mathbb{C}!$ 

A. Utiralova (MIT)

H-C bimodules in complex rank



# Appendix



Aleksandra Utiralov...

Roughly, we define the sequence  $\lambda^{(n)}$  in the way that  $k, l, \gamma(\lambda)$  are constant (or equivalently, universally bounded) and  $\alpha^{(n)}(\lambda)$  and  $\beta^{(n)}(\lambda)$  are unbounded parts.

And  $\mu^{(n)}$  has the same k, l, some  $\gamma(\mu)$  and  $\alpha^{(n)}(\mu) - \alpha^{(n)}(\lambda)$  is a constant element in  $\mathbb{Z}^k$  for almost all n. Similarly for  $\beta$ .

| Utiralova (MIT) | H-C bimodules in complex rank |
|-----------------|-------------------------------|
|-----------------|-------------------------------|

