Title: TBA

Speakers: Daniel Ranard

Series: Perimeter Institute Quantum Discussions

Date: February 02, 2022 - 3:30 PM

URL: https://pirsa.org/22020044

Abstract: Abstract: TBD

Zoom Link:

Pirsa: 22020044 Page 1/35

Coarse-grained entropy, microstates, and the quantum marginal problem

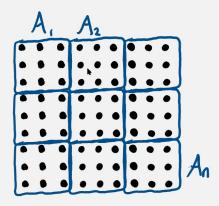
Daniel Ranard (MIT)

Perimeter Institute, February 2022

Pirsa: 22020044 Page 2/35

Outline

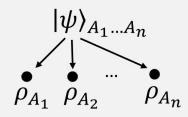
- Review:
 - Coarse-grained entropy
 - Quantum marginal problem
- Main results
 - $\log M < S_{CG}(\rho)$ (Osborne 2008)
 - $S_{CG}(\rho) \approx \log M$ (Today)
- Proof sketches
- Open questions



$$S_{CG}(\rho) = \sum S(\rho_{A_i})$$

$$S_{CG}(\rho) \approx \log M$$

M = # of solutions $|\psi\rangle$ to marginal problem



Pirsa: 22020044 Page 3/35

Classically, entropy satisfies the 2nd Law of Thermo. What's the analog in quantum many–body systems?

Take closed quantum system with state $\rho(t)$

$$\rightarrow S(\rho(t)) = \text{constant}$$

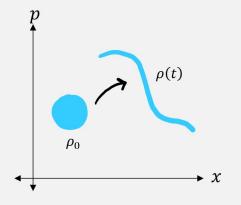
Global von Neumann entropy not a great candidate for the 2nd Law!

Pirsa: 22020044 Page 4/35

Analogy from classical physics:

Classical "state"
$$\rho(x,p)$$
 = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$

That entropy doesn't change either!

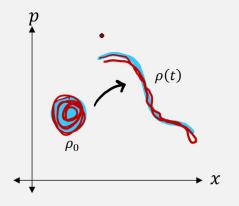


Pirsa: 22020044 Page 5/35

Analogy from classical physics:

Classical "state"
$$\rho(x,p)$$
 = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$

That entropy doesn't change either!

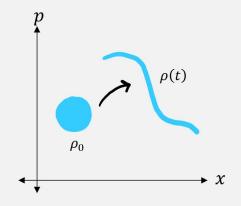


Pirsa: 22020044 Page 6/35

Analogy from classical physics:

Classical "state" $\rho(x,p)$ = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$

That entropy doesn't change either! Instead....



(4) (b) (2) (b) (c) (c) (c) (c)

Pirsa: 22020044 Page 7/35

Analogy from classical physics:

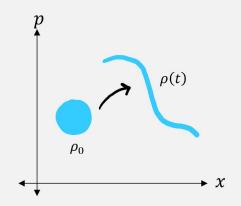
Classical "state"
$$\rho(x,p)$$
 = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$

That entropy doesn't change either! Instead....

For microstate α ,

$$S(\alpha) = \log \Omega$$

 Ω = # microstates with same coarse-grained properties as α e.g. total energy

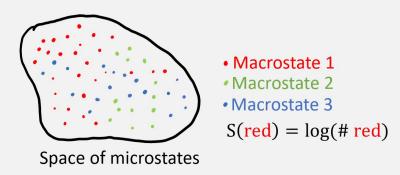


Pirsa: 22020044 Page 8/35

Coarse-grained entropy in QM?

Lessons from classical case:

- Useful notion of entropy involves coarse-graining
- Entropy associated to microstate counts how many *other* microstates have the same coarse-grained properties



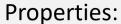
Define analogous "coarse-grained entropy" S_{CG} in quantum? Lots of options. We'll study a very simple one!

Pirsa: 22020044 Page 9/35

Quantum coarse-grained entropy S_{CG}

Partition the lattice into regions A_i . Define **coarse-grained entropy**:

$$S_{CG}(\rho) = \sum_{i} S(\rho_{A_i})$$

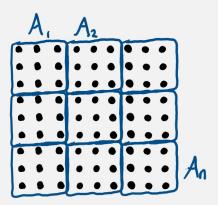


- Depends on partition, but often insensitive to exact choice.
- If ρ is pure product state, $S_{CG}(\rho) = 0$.

• If
$$\rho$$
 is thermal state $\rho = e^{-\beta H}/Z$ for local Hamiltonian,
$$S_{CG}(\rho) \approx \sum_i S\left(\frac{e^{-\beta H}_{A_i}}{Z_i}\right) \approx S\left(\frac{e^{-\beta H}}{Z}\right) + boundary\ terms \approx \ \text{thermal entropy.}$$

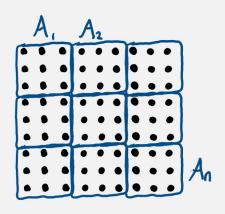
- If ρ is a pure state that looks thermal on regions A_i , same as above.
- Under natural time-evolution, S_{CG} tends to increase.

But what does this entropy *count*?



Coarse-grained entropy as microstate counting

Given ρ , ask about states $|\phi\rangle$ that match ρ on all regions A_i , i.e. ${\rm Tr}_{\overline{A_i}}|\phi\rangle\langle\phi|\approx \rho_{A_i}$



Such states $|\phi\rangle$ like "microstates," with the same local properties as ρ . If you can only observe ρ locally, then for all you know the system could really be in state $|\phi\rangle$.

We show: The quantity $S_{CG}(\rho) = \sum_i S(\rho_{A_i})$ counts microstates.

Pirsa: 22020044 Page 11/35

Quantum marginal problem

"Marginal" = "Reduced density matrix" = "RDM".

Quantum marginal problem:

Given list of marginals ρ_{A_i} , does there exist a global state σ consistent with them?

Any σ with $\sigma_{A_i} = \rho_{A_i}$ is a "solution" to that marginal problem.

Example:

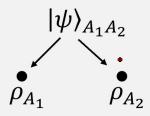
Given ρ_{A_1} and ρ_{A_2} on two qubits A_1 and A_2 , does there exist a pure state $|\psi\rangle$ with those marginals?

(Answer: Yes iff ρ_{A_1} and ρ_{A_2} have same spectrum.)

General marginal problem: hard! (QMA-complete.)

But we're interested in approximate solutions for large systems: easier.

We want to **count how many solutions**: what's the largest number of pure, orthogonal states we can find, such that each state has marginals approximately given by the ρ_{A_i} ?



Pirsa: 22020044 Page 12/35

Prior work

Coarse-grained entropy $S_{CG}(\rho) = \sum_i S(\rho_{A_i})$ and related quantities discussed by many.

- Quantum thermodynamics: Gell-Mann + Hartle
- Holography: Susskind, Kelly + Wall, Englehardt + Wall

Tobias Osborne noted the upper bound

$$\log M \leq S_{CG}(\rho)$$

where M is the max number of pure, orthogonal solutions to marginal problem. We'll be showing (approximate) equality!

Brandao + Dalzell show the existence of *one* approximate solution to the marginal problem, given arbitrary marginals on overlapping local regions. (With an MPS!) We'll be interested in showing *many* solutions.

Pirsa: 22020044 Page 13/35

Main results and intuition

Pirsa: 22020044 Page 14/35

Main result (for case of disjoint regions)

Partition the system into disjoint regions A_i . Define *coarse-grained entropy:*

$$S_{CG}(\rho) = \sum_{i=1}^{n} S(\rho_{A_i})$$

Let M = "number of orthogonal, pure, approximate solutions to marginal problem"

= size of the largest set of orthogonal states
$$\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$$
 such that $\|\mathrm{Tr}_{\overline{A_i}}|\phi_{\alpha}\rangle\langle\phi_{\alpha}|-\rho_{A_i}\|_1\leq \epsilon$ for each A_i , $|\phi_{\alpha}\rangle$.

Then

$$S_{CG} \approx \log M$$

In particular:

$$S_{CG} - \sqrt{n \log \epsilon^{-1}} \log d \le \log M \le S_{CG} + \epsilon n \log d$$

$$d = \max_{i} \dim(A_i)$$

Note generally $S_{CG} \propto n$ is extensive. $S_{CG} \approx \log M$ up to "sub-extensive corrections" if e.g. $\epsilon \sim \frac{1}{n^2}$.

Pirsa: 22020044 Page 15/35

Main result (for case of disjoint regions)

Partition the system into disjoint regions A_i . Define *coarse-grained entropy:*

$$S_{CG}(\rho) = \sum_{i=1}^{n} S(\rho_{A_i})$$

= size of the largest set of orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $\|\mathrm{Tr}_{\overline{A_i}}|\phi_{\alpha}\rangle\langle\phi_{\alpha}|-\rho_{A_i}\|_1\leq \epsilon$ for each A_i , $|\phi_{\alpha}\rangle$.

Then

In particular:

$$S_{CG} \approx \log M$$

$$S_{CG} - \sqrt{n \log \epsilon^{-1}} \log d \le \log M \le S_{CG} + \epsilon n \log d$$

$$d = \max_{i} \dim(A_i)$$

Note generally $S_{CG} \propto n$ is extensive. $S_{CG} \approx \log M$ up to "sub-extensive corrections" if e.g. $\epsilon \sim \frac{1}{n^2}$.

Pirsa: 22020044

Intuition for $S_{CG} \approx \log M$

If each $\rho_{A_i} = |\psi_{A_i}\rangle\langle\psi_{A_i}|$ is pure, the only solution is $|\psi\rangle = |\psi_{A_1}\rangle \dots |\psi_{A_n}\rangle$. $S_{CG} = 0, \quad M = 1.$

If each ρ_{A_i} maximally mixed, Haar-random $|\psi\rangle$ gives approximate solution. So "most" pure states work. $S_{CG} = n \log d$, $M \approx \dim H = d^n$.

Pirsa: 22020044 Page 17/35

Generalization to overlapping marginals

With caveats:

 $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on all regions of some length scale, i.e. including overlapping regions.

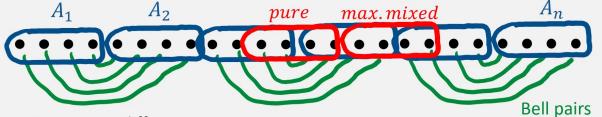
Pirsa: 22020044 Page 18/35

Generalization to overlapping marginals

With caveats:

 $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on *all* regions of some length scale, i.e. including overlapping regions.

Example of issues:



 A_i maximally mixed

 S_{CG} for blue and red partitions very different.

We'll define a version of S_{CG} that's minimized over all partitions of fixed length scale.

Then we'll count pure states that match the marginals for all regions (independent of partition) below some **smaller** scale.

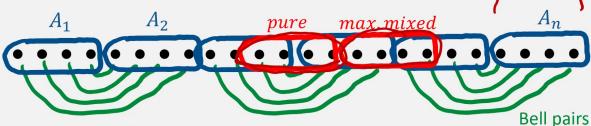
Pirsa: 22020044 Page 19/35

Generalization to overlapping marginals

With caveats:

 $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on *all* regions of some length scale, i.e. including overlapping regions.

Example of issues:



 A_i maximally mixed

 S_{CG} for blue and red partitions very different.

We'll define a version of S_{CG} that's minimized over all partitions of fixed length scale.

Then we'll count pure states that match the marginals for all regions (independent of partition) below some smaller scale.

Pirsa: 22020044 Page 20/35

Statement: [specialized to case $\epsilon = 0$]

Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that

$$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$

for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$.

Pirsa: 22020044 Page 21/35

Statement: [specialized to case $\epsilon = 0$]

Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that

$$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$

for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$.

Proof (Osborne):

Take the average: $\sigma = \frac{1}{M} \sum_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$. Note $\sigma_{A_i} = \rho_{A_i}$.

Then

$$\log M = S(\sigma) \leq \sum_{subadditivity} S(\sigma_{A_i}) = \sum_{i} S(\rho_{A_i}).$$

Easy!

Statement: [specialized to case $\epsilon = 0$]

Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that

$$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$

for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$.

Proof (Osborne):

Take the average: $\sigma = \frac{1}{M} \sum_{\alpha} |\phi_{\alpha}\rangle\langle\phi_{\alpha}|$. Note $\sigma_{A_i} = \rho_{A_i}$.

Then

$$\log M = S(\sigma) \leq \sum_{subadditivity} S(\sigma_{A_i}) = \sum_{i} S(\rho_{A_i}) > \int_{CG} (\varsigma) \epsilon_{asy!}$$

Pirsa: 22020044 Page 23/35

Statement:

Partition the system into disjoint regions A_i . Let $S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$.

Then there exist M orthogonal pure states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that

$$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| \approx \rho_{A_i}$$

for some M with

$$\log M > S_{CG}(\rho) - o\left(\sqrt{n\log \epsilon^{-1}}\log d\right). \qquad d = \max_{i} \dim(A_i)$$

Extra desideratum:

Would be nice for the $|\phi_{\alpha}\rangle$ to be low complexity, as possible "microstates."

Pirsa: 22020044 Page 24/35

Statement: $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$

Proof sketch:

Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$.

Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$.

Let $T = \{ \text{product states } | 011011 \dots \} \text{ with } \approx p_1 \text{ zeros and } \approx p_2 \text{ ones} \}$

Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$.

Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle \langle \psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle \equiv \frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle \langle \psi_i|$, because the terms are unlikely to interfere.

 \rightarrow We already found one approximate solution $|\phi_1\rangle$

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$.

Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T.

Pirsa: 22020044 Page 25/35

Statement: $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$

Proof sketch:

P(error) on SA. Specialize to case A_1, \dots, A_n are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$

Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$.

Let $T = \{\text{product states } | 011011 \dots \}$ with $\approx p_1$ zeros and $\approx p_2$ ones $\}$

Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$.

Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv\frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere.

 \rightarrow We already found one approximate solution $|\phi_1\rangle$.

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$.

Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T.

Pirsa: 22020044 Page 26/35

Statement: $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$

Proof sketch:

Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1|0\rangle\langle 0| + p_2|1\rangle\langle 1|$.

Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$.

Let $T = \{\text{product states } | 011011 \dots \}$ with $\approx p_1$ zeros and $\approx p_2$ ones $\}$

Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$.

Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv \frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere.

 \rightarrow We already found one approximate solution $|\phi_1\rangle$.

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$.

Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T.

Statement: $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$

Proof sketch:

Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$.

Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$ ρ_{A_i} ρ_{A_i}

Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$.

Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv\frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere.

 \rightarrow We already found one approximate solution $|\phi_1\rangle$.

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$.

Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T.

Pirsa: 22020044 Page 28/35

Statement for "overlapping" case:

Choose two length scales, $L'\gg L$. Define $S_{CG}^{(L')}(\rho)=\min_{partitions}\sum_{i=1}^n S(\rho_{A_i})$ with minimum over partitions into **disjoint** regions A_i of size $|A_i|=L'$

Then \exists M_L orthogonal pure states that match ρ (to error L/L') on all regions of size $\leq L$ (including overlapping regions), with

$$\log M_L > S_{CG}^{(L')} - o\left(n\frac{L'}{L}\right)$$

Proof sketch:

Fix a partition into regions A_i of size L'. Already showed how to find $\approx \exp(S_{CG}^{(L')})$ pure states with marginals ρ_i . Call this set of pure states W_1 . Then shift regions A_i by one site and repeat: call this set of states W_2 . Repeat to $W_{L'}$.

Choose one state from each W_i and take uniform superposition. New state has correct marginals on every region of size $\leq L$, to error L'/L. (How do we ensure the states from different W_i don't interfere? Trick adapted from Brandao + Dalzell.)

Then repeat, choosing a different state from each W_i .

Pirsa: 22020044 Page 29/35

Summary

We took a common proxy for thermodynamic entropy in quantum many-body systems, the coarse-grained entropy: A_i A_i

$$S_{CG}(\rho) = \sum_{i} S(\rho_{A_i})$$

What "microstates" does this quantity count?

We showed

$$S_{CG}(\rho) \approx \log M$$

counts the number M of orthogonal pure states with the same marginals as ρ .

Pirsa: 22020044 Page 30/35

Concrete open questions

- Can we count **exact** solutions to the marginal problem? For non-overlapping marginals, I suspect there are $\exp(S_{CG}(\rho))$ exact solutions. Sketchy proof, with numerical support.
- Can we construct O(1)-complexity solutions to the marginal problem? Brandao + Dalzell already showed how to construct a *single* approximate solution of O(1)-complexity. Can you construct $\exp(S_{CG}(\rho))$ such solutions?
- Can we extend our bounds to the alternative "max-entropy" definition of S_{CG} (e.g. as used in holography)?

Pirsa: 22020044 Page 31/35

Open open questions

- Connection to quantum PCP conjecture?
- What are dynamics of $S_{CG}(\rho(t))$? Microstate interpretation suggests it should increase?

Point of tension: recent work (Cotler, Jones, DR) suggests S_{CG} fluctuates in time much *less* in quantum case than classical.

• What's structure of space of consistent marginals? To specify all k-body RDMs on an n-body system only takes $\approx k \, n \log n$ bits, rather than naïve k^n . What's the right "data structure" to encode the set of k-body RDMs?

Pirsa: 22020044 Page 32/35

Open open questions

- Connection to quantum PCP conjecture?
- What are dynamics of $S_{CG}(\rho(t))$? Microstate interpretation suggests it should increase?

Point of tension: recent work (Cotler, Jones, DR) suggests S_{CG} fluctuates in time much *less* in quantum case than classical.

• What's structure of space of consistent marginals? To specify all k-body RDMs on an n-body system only takes $\approx k \, n \log n$ bits, rather than naïve k^n . What's the right "data structure" to encode the set of k-body RDMs?

Pirsa: 22020044 Page 33/35

Acknowledgments

Thanks to Michael Walter for discussions on the quantum marginal problem, and Geoff Penington for discussions on holographic coarsegrained entropies.

•

Pirsa: 22020044 Page 34/35

Thank you!

•

Pirsa: 22020044 Page 35/35