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* Quantum marginal problem
Sc6(p) = ) S(pa)
* Main results

* logM < Sc;(p) (Osborne 2008) Scc(p) = logM

* Sce(py=logM (Today) M = # of solutions [) to
marginal problem
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* Proof sketches

* Open questions
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Entropy: classical vs. quantum

Classically, entropy satisfies the 2" Law of Thermo.
What’s the analog in quantum many—body systems?

Take closed quantum system with state p(t)

- S (p(t)) = constant

[ Global von Neumann entropy not a great candidate for the 2"d Law! J
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Entropy: classical vs. quantum

Analogy from classical physics:

Classical “state” p(x,p) =
probability distribution over phase space

S(p(t)) = —J dx dp p(x,p,t) logp (x,p, t)

That entropy doesn’t change either!

p(t)

Po
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Entropy: classical vs. quantum

Analogy from classical physics:

Classical “state” p(x,p) =
probability distribution over phase space

S(p(t)) = —J dx dp p(x,p,t) logp (x,p, t)

That entropy doesn’t change either! Instead....

p(t)

Po

S=' log W
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Entropy: classical vs. quantum

Analogy from classical physics:

Classical “state” p(x,p) = A
probability distribution over phase space

S(p(t)) = —J dx dp p(x,p,t) logp (x,p, t)

p(t)

Po

That entropy doesn’t change either! Instead....

S=' log W

Coarse-grained (Boltzmann) entropy

For microstate «,
S(a) = log )

() = # microstates with same

coarse-grained properties as «
e.g. total energy
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Coarse-grained entropy in QM?

Lessons from classical case:
e Useful notion of entropy involves coarse-graining

* Entropy associated to microstate counts how many other microstates have
the same coarse-grained properties

+« Macrostate 1

e Macrostate 3
S(red) = log(# red)

Space of microstates

Define analogous “coarse-grained entropy” S in quantum?
Lots of options. We’'ll study a very simple one!
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Quantum coarse-grained entropy S¢¢

Partition the lattice into regions A;. Define coarse-grained entropy: r./i\'. f‘: e

e 0 00 0 0[]0 0 o

Scale) = ), SCon) nohontas

Properties: ‘ 2 ¢ qlooghoo
* Depends on partition, but often insensitive to exact choice. Ff":’: A N A

* If pis pure product state, Sc:(p) = 0. (08 oo e elo o)

If p is thermal state p = e #H /Z for local Hamiltonian,
—BHy.

i —-BH
Sce(p) = 2; S (e 7 ) ~ S (e Z ) + boundary terms =~ thermal entropy.

If p is a pure state that looks thermal on regions A;, same as above.
Under natural time-evolution, S tends to increase.

{ But what does this entropy count?}
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Coarse-grained entropy as microstate counting

A, A
Given p, AR R
ask about states |¢) that match p on all regions 4; , i.e. FR O GO0 GO0
Trz; |p )| = py, P P P
e 0 6] 0 0]0 0 o Aﬂ
e ® 6)o 0 0/0 o o

Such states |¢p) like “microstates,” with the same local properties as p.

If you can only observe p locally, then for all you know the system could really
be in state |}) .

We show: The quantity S¢;(p) = X; S(pa,) counts microstates.
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Quantum marginal problem

“Marginal” = “Reduced density matrix” = “RDM”.

Quantum marginal problem:
Given list of marginals p,, does there exist a global state o consistent with them?

Any o with g4, = p,. is a “solution” to that marginal problem.

Example:

Given p4, and p,4, on two qubits A; and A,, does there exist a pure state [i) V)4 4
with those marginals? / \1‘ :
(Answer: Yes iff p, and p,, have same spectrum.) . .

General marginal problem: hard! (QMA-complete.) Pa, Pa,
But we’re interested in approximate solutions for large systems: easier.

We want to count how many solutions: what’s the largest number of pure, orthogonal
states we can find, such that each state has marginals approximately given by the p,, ?

Pirsa: 22020044 Page 12/35



Prior work

Coarse-grained entropy Sc(p) = 2; S(p4,) and related quantities discussed by
many.

* Quantum thermodynamics: Gell-Mann + Hartle
* Holography: Susskind, Kelly + Wall, Englehardt + Wall

Tobias Osborne noted the upper bound
logM < S¢e(p)

where M is the max number of pure, orthogonal solutions to marginal problem.
We’'ll be showing (approximate) equality!

Brandao + Dalzell show the existence of one approximate solution to the marginal
problem, given arbitrary marginals on overlapping local regions. (With an MPS!)

We’'ll be interested in showing many solutions.
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Main results and intuition
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Main result (for case of disjoint regions)

!
Partition the system into disjoint regions A4;. }4\ - ’OA& ) 'c‘ v
Define coarse-grained entropy: " <+
Sco(p) = ) S(pa) U N
=il
Let M = “number of orthogonal, pure, approximate solutions to marginal problem” \
= size of the largest set of orthogonal states {|¢,)}7—, such that - S
ITrz;|PpaXdal — palls < € foreach 4;, |dq).
Then
Sce = logM
In particular: d = max dim(4;)

Scc —nloge llogd <logM < Sq; +€enlogd '

Note generally Sq; « n is extensive. )
Sce = log M up to “sub-extensive corrections” if e.g. € ~ —.
n
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Dmiel Ranard

Main result (for case of disjoint regions)

!
Partition the system into disjoint regions A4;. }4\ 3 ’OA& )
Define coarse-grained entropy:

n S ~ ~
Sco(p) = ) S(pa) U N
=il
Let M = “number of orthogonal, pure, approximate solutions to marginal problem” \
= size of the largest set of orthogonal states {|¢,)}7—, such that - e
ITrz;|paXdal — palls < € foreach 4;, |dq). \ A
N S /\
Then
Sce = logM
In particular: d = max dim(4;)

Scc —nloge llogd <logM < Sq; +€enlogd '

-

Note generally Sq; « n is extensive.

: : : 1
Sce = log M up to “sub-extensive corrections” if e.g. € ~ —
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Daniel LELE]

Intuition for Sc; = log M

If each pAi — |¢Ai>(¢Ai| N pure,
the only solution is ) = |4, ) - [¥a,)-
SCG = O, M = 1.

If each p,, maximally mixed, Haar-random [1)) gives approximate
solution. So “most” pure states work. .
Scc =nlogd, M ~dimH =d". &, A\‘(J\ ‘\;
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Generalization to overlapping marginals

With caveats:

Scc(p) also counts the number of orthogonal pure states that match

the marginals p, on all regions of some length scaIe
i.e. including overlapping regions. D '@@

o&
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Generalization to overlapping marginals

With caveats:

Scc(p) also counts the number of orthogonal pure states that match
the marginals p, on all regions of some length scale,
i.e. including overlapping regions.

Example of issues:

A; maximally mixed

o ) Bell pairs
Scc for blue and red partitions very different.

WEe'll define a version of S that’s minimized over all partitions of fixed length scale.
Then we’ll count pure states that match the marginals for all regions (independent of partition) below some smaller scale.

Pirsa: 22020044 Page 19/35



Generalization to overlapping marginals

With caveats:

Scc(p) also counts the number of orthogonal pure states that match
the marginals p, on all regions of some length scale,
i.e. including overlapping regions.

\
le of b
Example of issues: /\/‘/\
A A, ixed Ay

A; maximally mixed

o ) Bell pairs
Scc for blue and red partitions very different.

We'll define a version of S¢ that’s minimized over all partitions of fixed length scale. ]/
Then we’ll count pure states that match the marginals for all regions (independent of partition) below some smaller scale.
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Upper bounding number of marginal solutions

StateTnent: [specialized to case € = 0] /f\‘ AL
Partition the system into disjoint regions A;. Assume there eXiSM
orthogonal states {|&,)}Y_, such that

TrA_l-|¢a>(¢a| = Pa;

for each |¢,) and 4;. ThenlogM < S.:(p) = ZiS(pAi).

Page 21/35
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Upper bounding number of marginal solutions

Statement: [specialized to case € = 0]

Partition the system into d|SJoint regions A;. Assume there exist
orthogonal states {|¢, )}, such that

Trz;|pa X dal = py;
for each |¢,) and A;. ThenlogM < S.:(p) = ZiS(pAi).
Proof (Osborne):
Take the average: o = %Zalqba)(gbal. Note g,.= pa,-
Then

logM = S(o) <ZLS(0A) ¥ S(pA)

subadditivity
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Upper bounding number of marginal solutions

Statement: [specialized to case € = 0]

Partition the system into d|SJoint regions A;. Assume there exist
orthogonal states {|¢, )}, such that

Trz;|pa X dal| = py;
for each |¢,) and 4;. ThenlogM < S.:(p) = ZiS(pAi).
Proof (Osborne):
Take the average: o = %Zalqba)(gbal. Note g,.= pa,-
Then

C Ty,

logM = S(0) < ZLS(GA ) Z S(PA ) Scﬁ,(%\asy! &=

subadditivity
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Dmiel Ranard

Lower bounding number of marginal solutions

Statement:
Partition the system into disjoint regions A4;. Let Scc(p) = ZiS(pAl.).
Then there exist M orthogonal pure states {|¢,)}7_, such that

Tr,Ti|¢a)(¢a| ~ Pa;
for some M with

logM > Sc(p) — o(y/nlogetlogd). d = max dim(4;)
B v, l

Extra desideratum:
Would be nice for the |¢,) to be low complexity, as possible “microstates.”
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Lower bounding number of marginal solutions

Statement: log M > S¢;(p) — o(y/nloge1logd)
Proof sketch:

Specialize to case 4, ..., A, are each single qubits, with same p,. = p;|0)(0]| + p,|1)(1].

Want to construct M ~ eS¢G states |¢) with marginals ~ Pa;
Scc =nS(pa) = nS{p1, p2 D).

Let T = {product states |011011 ...) with = p, zeros and = p, ones}

Number of such states is |T| =~ 2"n5{P1p2}),

Randomlyichoose k states from T, denoted {|y; )}k .- Take k o logn.
The state 1_1|1/J X(t;| has marginals close to py,, W|th ‘sampling error” like 1/Vk.
Note |¢;) = \/_Zl 111¥;) has same marginals as the Z _1|Yi)Xy;|, because the terms are unlikely to interfere.

— We already found one approximate solution |¢1)-

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to
obtain another solution |¢,).

Can repeat process for M = exp(Sc(p) — o(n)) iterations without significantly depleting T.
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Lower bounding number of marginal solutions

Statement: log M > S¢.(p) — o(y/nlogelogd)

Proof sketch: P (e,(\’ 0r> o1 gA ’

Specialize to case 4, ..., A, are each single qubits, with same p,. = p;|0)(0]| + p,|1)(1].

Want to construct M ~ eS¢G states |¢) with marginals ~ Pa;
Sce =nS(pa) = nS{p1, p2}).

Let T = {product states |011011 ...) with = p, zeros and = p, ones}

===,

Number of such states is |T| =~ 2"5{P1P2}). efrof
Rand -chpose k states from T, denoted {lp:)Ye . Take k « logn, )
The state kZ i1 l)(tp | has marginals close to py,, W|th ‘sampling error” like 1/Vk.

Note |¢p,) = \/_Z _1|¥;) has same marginals as the Zk 1) Yil, because the terms are unlikely to interfere.

— We already found one approximate solution |¢,).

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to
obtain another solution |¢,).

Can repeat process for M = exp(Sc¢(p) — o(n)) iterations without significantly depleting T.
e e T
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Lower bounding number of marginal solutions

Statement: log M > S¢;(p) — o(y/nloge1logd)

Proof sketch: P(@f\’é)r> o1 gA’

Specialize to case 4, ..., A, are each single qubits, with same p,. = p;|0)(0]| + p,|1)(1].

Want to construct M ~ eS¢G states |¢) with marginals ~ Pa;
Sce =nS(pa) = nS{p1, 2.

Let T = {product states |011011 ...) with = p, zeros and = p, ones}

Number of such states is |T| =~ 2"n5{P1p2}),

Rand -chpose k states from T, denoted {|y; )} _,. Take k « logn, ) '\(\‘(
The state kZ i1 l)(tp | has marginals close to py,, W|th ‘sampling error” like 1/Vk.

Note |¢;) = \/_Z _1|¥;) has same marginals as the Zk 1) Yil, because the terms are unlikely to interfere.

o &

— We already found one approximate solution |¢,).

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to
obtain another solution |¢,).

Can repeat process for M = exp(Sc(p) — o(n)) iterations without significantly depleting T.
e e T
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Lower bounding number of marginal solutions

Statement: log M > S¢¢(p) — o(y/nlogelogd)

Proof sketch: P(&((gr > o1 gA |

Specialize to case 4, ..., A, are each single qubits, with same p,. = p;|0)(0]| + p,|1)(1].

Want to construct M ~ eS¢G states |¢) with margmals = Py,

Sce = nS(pa) = nS({p1, p2}). 7 Eo 5 ONE 30
Let T = {product states |011011 ...) with = pl(\:eros and = pﬂ)nes}

Number of such states is |T| =~ 2"5{P1P2}), 15( 3((\& 3“\ ) rof 8
Rand -choose k states from T, denoted {|y; )} _,. Take k « logn, ) '\(\\(
The state kZ i1 l)(tp | has marginals close to py,, W|th ‘sampling error” like 1/Vk.

Note |¢p,) = \/_Z _1|¥;) has same marginals as the Zk 1) Yil, because the terms are unlikely to interfere.

— We already found one approximate solution |¢,).

Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to
obtain another solution |¢,).

Can repeat process for M = exp(Sc¢(p) — o(n)) iterations without significantly depleting T.
e e T
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Lower bounding number of marginal solutions

Statement for “overlapping” case:

with minimum over

/ s (~Lr) _ - n partitions into disjoint
Choose two length scales, L' >> L. Define S;."(p) = par%lt%ns 2i=15(Pa,) regions A. of size |4;] = L

Then 3 My, orthogonal pure states that match p (to error L/L") on all regions of size < L (including

overlapping regions), with
L) L
logMp > S;c” —ofn

L
Proof sketch:

Fix a partition into regions A; of size L'. Already showed how to find ~ exp(Ség)) pure states with
marginals p;. Call this set of pure states W;. Then shift regions A; by one site and repeat: call this
set of states I/,. Repeat to IV/;,.

Choose one state from each W; and take uniform superposition. New state has correct marginals
on every region of size < L, to error L' /L. (How do we ensure the states from different W; don't

interfere? Trick adapted from Brandao + Dalzell.) L
Then repeat, choosing a different state from each W;. R XL L &P am cecoe
L
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Summary

We took a common proxy for thermodynamic entropy in quantum
many-body systems, the coarse-grained entropy:

A A
S
Sco(0) = ) S0a) e
i e o oo 0 0j® 0o
What “microstates” does this quantity count? f-‘i—g e E o n
We showed o0 ojecoloce)

Sce(p) = logM

counts the number M of orthogonal pure states with the same
marginals as p.
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Concrete open questions

* Can we count exact solutions to the marginal problem?
For non-overlapping marginals, | suspect there are exp(Sc;(p)) exact
solutions. Sketchy proof, with numerical support.

e Can we construct O(1)-complexity solutions to the marginal problem?
Brandao + Dalzell already showed how to construct a single
approximate solution of O(1)-complexity. Can you construct
exp(Sc¢(p)) such solutions?

e Can we extend our bounds to the alternative “max-entropy”
definition of S (e.g. as used in holography)?
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Open open questions

* Connection to quantum PCP conjecture?

» What are dynamics of S-- (p(t))? Microstate interpretation suggests
it should increase?

Point of tension: recent work (Cotler, Jones, DR) suggests S.. fluctuates in time
much /ess in quantum case than classical.

* What’s structure of space of consistent marginals? To specify all k-
body RDMs on an n-body system only takes = k nlogn bits, rather
than naive k™. What’s the right “data structure” to encode the set of

k-body RDMs?
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Thank you!
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