Title: TBA Speakers: Daniel Ranard Series: Perimeter Institute Quantum Discussions Date: February 02, 2022 - 3:30 PM URL: https://pirsa.org/22020044 Abstract: Abstract: TBD Zoom Link: Pirsa: 22020044 Page 1/35 # Coarse-grained entropy, microstates, and the quantum marginal problem Daniel Ranard (MIT) Perimeter Institute, February 2022 Pirsa: 22020044 Page 2/35 #### Outline - Review: - Coarse-grained entropy - Quantum marginal problem - Main results - $\log M < S_{CG}(\rho)$ (Osborne 2008) - $S_{CG}(\rho) \approx \log M$ (Today) - Proof sketches - Open questions $$S_{CG}(\rho) = \sum S(\rho_{A_i})$$ $$S_{CG}(\rho) \approx \log M$$ M = # of solutions $|\psi\rangle$ to marginal problem Pirsa: 22020044 Page 3/35 Classically, entropy satisfies the 2nd Law of Thermo. What's the analog in quantum many–body systems? Take closed quantum system with state $\rho(t)$ $$\rightarrow S(\rho(t)) = \text{constant}$$ Global von Neumann entropy not a great candidate for the 2nd Law! Pirsa: 22020044 Page 4/35 Analogy from classical physics: Classical "state" $$\rho(x,p)$$ = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$ That entropy doesn't change either! Pirsa: 22020044 Page 5/35 Analogy from classical physics: Classical "state" $$\rho(x,p)$$ = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$ That entropy doesn't change either! Pirsa: 22020044 Page 6/35 Analogy from classical physics: Classical "state" $\rho(x,p)$ = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$ That entropy doesn't change either! Instead.... (4) (b) (2) (b) (c) (c) (c) (c) Pirsa: 22020044 Page 7/35 Analogy from classical physics: Classical "state" $$\rho(x,p)$$ = probability distribution over phase space $S(\rho(t)) = -\int dx \ dp \ \rho(x,p,t) \log \rho \ (x,p,t)$ That entropy doesn't change either! Instead.... For microstate α , $$S(\alpha) = \log \Omega$$ Ω = # microstates with same coarse-grained properties as α e.g. total energy Pirsa: 22020044 Page 8/35 #### Coarse-grained entropy in QM? #### Lessons from classical case: - Useful notion of entropy involves coarse-graining - Entropy associated to microstate counts how many *other* microstates have the same coarse-grained properties Define analogous "coarse-grained entropy" S_{CG} in quantum? Lots of options. We'll study a very simple one! Pirsa: 22020044 Page 9/35 # Quantum coarse-grained entropy S_{CG} Partition the lattice into regions A_i . Define **coarse-grained entropy**: $$S_{CG}(\rho) = \sum_{i} S(\rho_{A_i})$$ - Depends on partition, but often insensitive to exact choice. - If ρ is pure product state, $S_{CG}(\rho) = 0$. • If $$\rho$$ is thermal state $\rho = e^{-\beta H}/Z$ for local Hamiltonian, $$S_{CG}(\rho) \approx \sum_i S\left(\frac{e^{-\beta H}_{A_i}}{Z_i}\right) \approx S\left(\frac{e^{-\beta H}}{Z}\right) + boundary\ terms \approx \ \text{thermal entropy.}$$ - If ρ is a pure state that looks thermal on regions A_i , same as above. - Under natural time-evolution, S_{CG} tends to increase. But what does this entropy *count*? #### Coarse-grained entropy as microstate counting Given ρ , ask about states $|\phi\rangle$ that match ρ on all regions A_i , i.e. ${\rm Tr}_{\overline{A_i}}|\phi\rangle\langle\phi|\approx \rho_{A_i}$ Such states $|\phi\rangle$ like "microstates," with the same local properties as ρ . If you can only observe ρ locally, then for all you know the system could really be in state $|\phi\rangle$. We show: The quantity $S_{CG}(\rho) = \sum_i S(\rho_{A_i})$ counts microstates. Pirsa: 22020044 Page 11/35 #### Quantum marginal problem "Marginal" = "Reduced density matrix" = "RDM". #### **Quantum marginal problem:** Given list of marginals ρ_{A_i} , does there exist a global state σ consistent with them? Any σ with $\sigma_{A_i} = \rho_{A_i}$ is a "solution" to that marginal problem. #### **Example:** Given ρ_{A_1} and ρ_{A_2} on two qubits A_1 and A_2 , does there exist a pure state $|\psi\rangle$ with those marginals? (Answer: Yes iff ρ_{A_1} and ρ_{A_2} have same spectrum.) General marginal problem: hard! (QMA-complete.) But we're interested in approximate solutions for large systems: easier. We want to **count how many solutions**: what's the largest number of pure, orthogonal states we can find, such that each state has marginals approximately given by the ρ_{A_i} ? Pirsa: 22020044 Page 12/35 #### Prior work Coarse-grained entropy $S_{CG}(\rho) = \sum_i S(\rho_{A_i})$ and related quantities discussed by many. - Quantum thermodynamics: Gell-Mann + Hartle - Holography: Susskind, Kelly + Wall, Englehardt + Wall Tobias Osborne noted the upper bound $$\log M \leq S_{CG}(\rho)$$ where M is the max number of pure, orthogonal solutions to marginal problem. We'll be showing (approximate) equality! Brandao + Dalzell show the existence of *one* approximate solution to the marginal problem, given arbitrary marginals on overlapping local regions. (With an MPS!) We'll be interested in showing *many* solutions. Pirsa: 22020044 Page 13/35 #### Main results and intuition Pirsa: 22020044 Page 14/35 ### Main result (for case of disjoint regions) Partition the system into disjoint regions A_i . Define *coarse-grained entropy:* $$S_{CG}(\rho) = \sum_{i=1}^{n} S(\rho_{A_i})$$ Let M = "number of orthogonal, pure, approximate solutions to marginal problem" = size of the largest set of orthogonal states $$\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$$ such that $\|\mathrm{Tr}_{\overline{A_i}}|\phi_{\alpha}\rangle\langle\phi_{\alpha}|-\rho_{A_i}\|_1\leq \epsilon$ for each A_i , $|\phi_{\alpha}\rangle$. Then $$S_{CG} \approx \log M$$ In particular: $$S_{CG} - \sqrt{n \log \epsilon^{-1}} \log d \le \log M \le S_{CG} + \epsilon n \log d$$ $$d = \max_{i} \dim(A_i)$$ Note generally $S_{CG} \propto n$ is extensive. $S_{CG} \approx \log M$ up to "sub-extensive corrections" if e.g. $\epsilon \sim \frac{1}{n^2}$. Pirsa: 22020044 Page 15/35 ## Main result (for case of disjoint regions) Partition the system into disjoint regions A_i . Define *coarse-grained entropy:* $$S_{CG}(\rho) = \sum_{i=1}^{n} S(\rho_{A_i})$$ = size of the largest set of orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $\|\mathrm{Tr}_{\overline{A_i}}|\phi_{\alpha}\rangle\langle\phi_{\alpha}|-\rho_{A_i}\|_1\leq \epsilon$ for each A_i , $|\phi_{\alpha}\rangle$. Then In particular: $$S_{CG} \approx \log M$$ $$S_{CG} - \sqrt{n \log \epsilon^{-1}} \log d \le \log M \le S_{CG} + \epsilon n \log d$$ $$d = \max_{i} \dim(A_i)$$ Note generally $S_{CG} \propto n$ is extensive. $S_{CG} \approx \log M$ up to "sub-extensive corrections" if e.g. $\epsilon \sim \frac{1}{n^2}$. Pirsa: 22020044 # Intuition for $S_{CG} \approx \log M$ If each $\rho_{A_i} = |\psi_{A_i}\rangle\langle\psi_{A_i}|$ is pure, the only solution is $|\psi\rangle = |\psi_{A_1}\rangle \dots |\psi_{A_n}\rangle$. $S_{CG} = 0, \quad M = 1.$ If each ρ_{A_i} maximally mixed, Haar-random $|\psi\rangle$ gives approximate solution. So "most" pure states work. $S_{CG} = n \log d$, $M \approx \dim H = d^n$. Pirsa: 22020044 Page 17/35 ### Generalization to overlapping marginals With caveats: $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on all regions of some length scale, i.e. including overlapping regions. Pirsa: 22020044 Page 18/35 #### Generalization to overlapping marginals #### With caveats: $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on *all* regions of some length scale, i.e. including overlapping regions. #### Example of issues: A_i maximally mixed S_{CG} for blue and red partitions very different. We'll define a version of S_{CG} that's minimized over all partitions of fixed length scale. Then we'll count pure states that match the marginals for all regions (independent of partition) below some **smaller** scale. Pirsa: 22020044 Page 19/35 ### Generalization to overlapping marginals #### With caveats: $S_{CG}(\rho)$ also counts the number of orthogonal pure states that match the marginals ρ_A on *all* regions of some length scale, i.e. including overlapping regions. #### Example of issues: A_i maximally mixed S_{CG} for blue and red partitions very different. We'll define a version of S_{CG} that's minimized over all partitions of fixed length scale. Then we'll count pure states that match the marginals for all regions (independent of partition) below some smaller scale. Pirsa: 22020044 Page 20/35 **Statement:** [specialized to case $\epsilon = 0$] Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$ for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$. Pirsa: 22020044 Page 21/35 **Statement:** [specialized to case $\epsilon = 0$] Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$ for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$. Proof (Osborne): Take the average: $\sigma = \frac{1}{M} \sum_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$. Note $\sigma_{A_i} = \rho_{A_i}$. Then $$\log M = S(\sigma) \leq \sum_{subadditivity} S(\sigma_{A_i}) = \sum_{i} S(\rho_{A_i}).$$ Easy! **Statement:** [specialized to case $\epsilon = 0$] Partition the system into disjoint regions A_i . Assume there exist orthogonal states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| = \rho_{A_i}$$ for each $|\phi_{\alpha}\rangle$ and A_i . Then $\log M \leq S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$. Proof (Osborne): Take the average: $\sigma = \frac{1}{M} \sum_{\alpha} |\phi_{\alpha}\rangle\langle\phi_{\alpha}|$. Note $\sigma_{A_i} = \rho_{A_i}$. Then $$\log M = S(\sigma) \leq \sum_{subadditivity} S(\sigma_{A_i}) = \sum_{i} S(\rho_{A_i}) > \int_{CG} (\varsigma) \epsilon_{asy!}$$ Pirsa: 22020044 Page 23/35 #### **Statement:** Partition the system into disjoint regions A_i . Let $S_{CG}(\rho) \equiv \sum_i S(\rho_{A_i})$. Then there exist M orthogonal pure states $\{|\phi_{\alpha}\rangle\}_{\alpha=1}^{M}$ such that $$\operatorname{Tr}_{\overline{A_i}} |\phi_{\alpha}\rangle\langle\phi_{\alpha}| \approx \rho_{A_i}$$ for some M with $$\log M > S_{CG}(\rho) - o\left(\sqrt{n\log \epsilon^{-1}}\log d\right). \qquad d = \max_{i} \dim(A_i)$$ #### Extra desideratum: Would be nice for the $|\phi_{\alpha}\rangle$ to be low complexity, as possible "microstates." Pirsa: 22020044 Page 24/35 **Statement:** $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$ #### **Proof sketch:** Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$. Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$. Let $T = \{ \text{product states } | 011011 \dots \} \text{ with } \approx p_1 \text{ zeros and } \approx p_2 \text{ ones} \}$ Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$. Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle \langle \psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle \equiv \frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle \langle \psi_i|$, because the terms are unlikely to interfere. \rightarrow We already found one approximate solution $|\phi_1\rangle$ Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$. Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T. Pirsa: 22020044 Page 25/35 **Statement:** $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$ #### **Proof sketch:** P(error) on SA. Specialize to case A_1, \dots, A_n are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$ Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$. Let $T = \{\text{product states } | 011011 \dots \}$ with $\approx p_1$ zeros and $\approx p_2$ ones $\}$ Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$. Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv\frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere. \rightarrow We already found one approximate solution $|\phi_1\rangle$. Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$. Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T. Pirsa: 22020044 Page 26/35 **Statement:** $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$ #### **Proof sketch:** Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1|0\rangle\langle 0| + p_2|1\rangle\langle 1|$. Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$. $S_{CG} = nS(\rho_A) = nS(\{p_1, p_2\})$. Let $T = \{\text{product states } | 011011 \dots \}$ with $\approx p_1$ zeros and $\approx p_2$ ones $\}$ Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$. Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv \frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere. \rightarrow We already found one approximate solution $|\phi_1\rangle$. Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$. Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T. **Statement:** $\log M > S_{CG}(\rho) - o(\sqrt{n \log \epsilon^{-1}} \log d)$ #### **Proof sketch:** Specialize to case $A_1, ..., A_n$ are each single qubits, with same $\rho_{A_i} = p_1 |0\rangle\langle 0| + p_2 |1\rangle\langle 1|$. Want to construct $M \approx e^{S_{CG}}$ states $|\phi\rangle$ with marginals $\approx \rho_{A_i}$ ρ_{A_i} Number of such states is $|T| \approx 2^{nS(\{p_1,p_2\})}$. Randomly choose k states from T, denoted $\{|\psi_i\rangle\}_{i=1}^k$. Take $k \propto \log n$. The state $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$ has marginals close to ρ_{A_i} , with "sampling error" like $1/\sqrt{k}$. Note $|\phi_1\rangle\equiv\frac{1}{\sqrt{k}}\sum_{i=1}^k |\psi_i\rangle$ has same marginals as the $\frac{1}{k}\sum_{i=1}^k |\psi_i\rangle\langle\psi_i|$, because the terms are unlikely to interfere. \rightarrow We already found one approximate solution $|\phi_1\rangle$. Now repeat: Pick k more random states from states from T (avoiding the ones we already picked). Repeat to obtain another solution $|\phi_2\rangle$. Can repeat process for $M \approx \exp(S_{CG}(\rho) - o(n))$ iterations without significantly depleting T. Pirsa: 22020044 Page 28/35 #### Statement for "overlapping" case: Choose two length scales, $L'\gg L$. Define $S_{CG}^{(L')}(\rho)=\min_{partitions}\sum_{i=1}^n S(\rho_{A_i})$ with minimum over partitions into **disjoint** regions A_i of size $|A_i|=L'$ Then \exists M_L orthogonal pure states that match ρ (to error L/L') on all regions of size $\leq L$ (including overlapping regions), with $$\log M_L > S_{CG}^{(L')} - o\left(n\frac{L'}{L}\right)$$ #### **Proof sketch:** Fix a partition into regions A_i of size L'. Already showed how to find $\approx \exp(S_{CG}^{(L')})$ pure states with marginals ρ_i . Call this set of pure states W_1 . Then shift regions A_i by one site and repeat: call this set of states W_2 . Repeat to $W_{L'}$. Choose one state from each W_i and take uniform superposition. New state has correct marginals on every region of size $\leq L$, to error L'/L. (How do we ensure the states from different W_i don't interfere? Trick adapted from Brandao + Dalzell.) Then repeat, choosing a different state from each W_i . Pirsa: 22020044 Page 29/35 #### Summary We took a common proxy for thermodynamic entropy in quantum many-body systems, the coarse-grained entropy: A_i A_i $$S_{CG}(\rho) = \sum_{i} S(\rho_{A_i})$$ What "microstates" does this quantity count? We showed $$S_{CG}(\rho) \approx \log M$$ counts the number M of orthogonal pure states with the same marginals as ρ . Pirsa: 22020044 Page 30/35 #### Concrete open questions - Can we count **exact** solutions to the marginal problem? For non-overlapping marginals, I suspect there are $\exp(S_{CG}(\rho))$ exact solutions. Sketchy proof, with numerical support. - Can we construct O(1)-complexity solutions to the marginal problem? Brandao + Dalzell already showed how to construct a *single* approximate solution of O(1)-complexity. Can you construct $\exp(S_{CG}(\rho))$ such solutions? - Can we extend our bounds to the alternative "max-entropy" definition of S_{CG} (e.g. as used in holography)? Pirsa: 22020044 Page 31/35 #### Open open questions - Connection to quantum PCP conjecture? - What are dynamics of $S_{CG}(\rho(t))$? Microstate interpretation suggests it should increase? Point of tension: recent work (Cotler, Jones, DR) suggests S_{CG} fluctuates in time much *less* in quantum case than classical. • What's structure of space of consistent marginals? To specify all k-body RDMs on an n-body system only takes $\approx k \, n \log n$ bits, rather than naïve k^n . What's the right "data structure" to encode the set of k-body RDMs? Pirsa: 22020044 Page 32/35 #### Open open questions - Connection to quantum PCP conjecture? - What are dynamics of $S_{CG}(\rho(t))$? Microstate interpretation suggests it should increase? Point of tension: recent work (Cotler, Jones, DR) suggests S_{CG} fluctuates in time much *less* in quantum case than classical. • What's structure of space of consistent marginals? To specify all k-body RDMs on an n-body system only takes $\approx k \, n \log n$ bits, rather than naïve k^n . What's the right "data structure" to encode the set of k-body RDMs? Pirsa: 22020044 Page 33/35 ### Acknowledgments Thanks to Michael Walter for discussions on the quantum marginal problem, and Geoff Penington for discussions on holographic coarsegrained entropies. • Pirsa: 22020044 Page 34/35 # Thank you! • Pirsa: 22020044 Page 35/35