Title: Detecting nonclassicality in restricted general probabilistic theories
Speakers: Leevi Leppajarvi

Series. Quantum Foundations

Date: January 27, 2022 - 10:00 AM

URL.: https://pirsa.org/22010094

Abstract: The formalism of general probabilistic theories provides a universal paradigm that is suitable for describing various physical systems
including classical and quantum ones as particular cases. Contrary to the often assumed no-restriction hypothesis, the set of accessible
measurements within a given theory can be limited for different reasons, and this raises a question of what restrictions on measurements are
operationally relevant. We argue that all operational restrictions must be closed under simulation, where the simulation scheme involves mixing and
classical post-processing of measurements. We distinguish three classes of such operational restrictions: restrictions on measurements originating
from restrictions on effects; restrictions on measurements that do not restrict the set of effects in any way; and all other restrictions. As a setting to
detect nonclassicality in restricted theories we consider generalizations of random access codes, an intriguing class of communication tasks that
reveal an operational and quantitative difference between classical and quantum information processing. We formulate a natural generalization of
them, called random access tests, which can be used to examine collective properties of collections of measurements. We show that the violation of
aclassical bound in a random access test is a signature of either measurement incompatibility or super information storability, and that we can use
them to detect differencesin different restrictions.
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State Sf’ace: compact convex subset o} 3 tinite—dimensional veal vector space
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State space: compact convex subset of a finite—dimensional veal vector space

S=xeV|x>0, u(x)=1}
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Effect S,Jace:

consists of afHive f-uvxc{iovx’a\s
e:S —[0,1] giving probabilities on
states

No—-RESTRICTION HYPOTHESIS

v*
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Observahles

—  Aw observable A with 3 Finite number of outcomes is 3 mapping A 1 X = Ay

from a Finite outcome set QDA +o the set of effects £(S) such that

Y Ac(s) =1 *

XEQA

forall S € S,

— The set of observables on S is devoted by O(S).
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Other elements of an operational 'l:heory

Channels
Instruments

Composite Systems
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Quantum theory

Let H be a d-dimenSIona\ Hilber£ space

States: S(H)={p€ Ls(H)|p >0, tr[p]=1}

gffects: E(S(H))~E(H)={Ee L;(H)|O<ELI}

Obsevvables = PovMs: A : X — A(X) such that Z A(x) =1
XGQA
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CLASSICAL = SIMPLICES  NoN-QUANTUM NoN-cLASSICcAL QUANTUM
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SIMULATION oF MEASUREMENTS

FILTPPOV, HEINOSAART AND LEPPATARVT, STMULABTLITY OF OBSERVABLES TN GENERAL PROBABTLISTLC THEORIES, PHYS. ReV. A 97, 062107 (2018).

0SZMANTEC, GUERINT, WITTEK AND ACIN, PHYS. ReV. LETT. 115, 190501 (201)
GUERINT, BAVARESCO, TERRA CUNHA AND ACTN, J. MATH. PHYS. 58, 092102 (201])
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Mixing of devices




Simulation of devices
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Simulation of devices
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Simulation of devices
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Directions of app[ications

Limit £he wumbeyr of simulators

—% Compatibility of observables

Limit the wumbeyr of outcomes

-3 EH‘ec{:ive\\j dichotomic measurements

Oz _err=sim({A € O(S) |#Qﬂ& = 2})
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OPERATIONAL RESTRICTIONS

JOINT WORK WITH SERGEY FILIPPOV, STAN GUDDER AND TEIKO HEINOSAARI

FILTPPOV, GUDDER, HELNOSAART AND LEPPATARV, OPERATIONAL RESTRICTIONS IN GENERAL PROBABILISTIC THEORTES, FOUND. PHYS. 50, §30-876 (2020).




No—restriction hypothesis

E(S)={e:S —=10,1]|| e affine}

all mathematically valid functions ave taken to be physical effects wn the theovy

No oPERATIONAL JUSTIFICATION

JANOTTA AND LAL, GENERALIZED PROBABLLLSTC THEORTES WITHOUT THE NO-RESTRICTION HYPOTHESTS, PHYS. REV. A, §:052131 (2013).
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No—restriction hypothesis

E(S)={e:S —=10,1]|| e affine}

all mathematically valid tunctions avre taken to be physical effects n the theovy

No oPERATIONAL JUSTIFICATION

JANOTTA AND LAL, GENERALIZED PROBABILLSTLC THEORTES WITHOUT THE NO-RESTRICTION HYPOTHESTS, PHYS. REV. A, §1:052131 (2013).

A\So, how about obsevvables?
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Simulation clesed restrictions
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Simulatien clesed restrictions

rOe{'—: An operational vestriction of measurements is a subset O C OS)of )

obseyvables that is simulation c\osed, e

o~ —~

g sim(O) =0

Pirsa: 22010094 Page 22/42




Simulation clesed restrictions

For 5 subset of observables O C O(S) we denote

Es={e € E(S)!FA € O: e cran(A)}
—  the set of available effects

For 3 subset of effects £ C £(S) we denote
Oz ={A € O(S)|ran(A) C &}

—  +he ivwduced set of feasible obseyvables

xefl

*ran(A) = { YRR RO Q/\}
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Types of restrictions

vestyriction purely by

[(Tll) @ = Oé g'OY' Some g (o 8(8)J effect vestyictions

((‘\ZL) 8@ = 8 (8) bU": @ 7/ O (S )] Q vestyiction purely

ow obsevvables

(@) E5 C E(S) amd O 4Oz Sor any E C £(5))

r\—- vestyiction on both effects and observables




(R{): restrictions induced by effect restrictions

For a valid effect vestriction £ C £(S) we vequive that
EN uEé
B2) Ve € €, JA € Oz: e €ran(A)

Prop: Awn etfect vestriction ECE(S) satistying EI) and E2) imduces a simulation

closed operational vestriction O g i+ and only it 2 iS comvex

This ncludes but is viot limited o comvex effect subalgebras of £(S)
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(R{): restrictions induced by effect restrictions
|
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(R2): restrictions only on shservables

((m) Es =E(S) bt OFO(S)]
Bffectively dichotomic observables

Oz _err=simM({A € O(S) |#Qa = 2})

( ..
Prop:  IF O C O(S) is an operational vestriction of type (R2) then ")

o

- O e CO 3
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(R3): restrictions en both effects and shservables
| (not R/ nor R2)

I

Noisy obsevvables (vandom woise)

O ={tA+ (1 —t)pu|A € O(S),p € P(Qa))

Available effects

Ep, =ite+ (1 —t)pele € E(S),p €10,1]}
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(R3): restrictions on both effects and shservables
| (not R/ nor R2)

Noisy obsevvables (vandom woise)

O ={tA+ (1 —t)pu|A € O(S),p € P(Qa))

Available effects

Ep, ={te+ (1 —t)pele € E(S),p €10,1]}

(® 1S NoT INDUCED BY £ A,
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DETECTING NONCLASSICALITY WITH RANDOM
fACCESS TESTS

JOINT WORK WITH TETKO HEINOSAART

HEINOSAART AND LEPPATARV, RANDOM ACCESS TEST AS AN'IDENTIFLER OF NONCLASSTCALLTY, ARKLV:2112.03 781 [QUANT-PH] (2021).




Randem access coedes

Sz
»e
dop=d

Alice

Average success probability

P (MO, M3 sele) = — 3 [ME) 4o MU (50)

X

~ A TRy
optimal: ,d’ 14 b 1—|——) ZPE:Z,d]
e’ ( \/a> ‘Z ( d _
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Average success probability (#€; =m;)

P(MD, ..., MMi{ssly) -

nmy---
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Maximum avevage success probability for fixed obsevvables

1
(1)
Mes) 1o
nm]mngH L
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Infermation storability

Decoding powey of an obsevvable

Amax(A) = ) (A= )  supAy(s)

XEQA XEQA SES

L

A‘rn.(].)( (A)
#{A

is the maximal probability of decodi\nt) #QA messages by using A

Wwformation storability* of a subset O C O(S) g

Amax(@) = sup Amax(Aj
AcO

*MATSUMOTO AND KIMURA, INFORMATION STORING YIELDS A POINT-ASYMMETRY OF STATE SPACE TN GENERAL PROBABTLISTIC THEORTES, ARKTY-1802 01162 [QUANT-PH], (2018).
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Connecting RﬁTS and incompatibi(ity of oshservabhles

Def: observables M) ... M) are @ —compatible it they are compatible
v e yointly measurable and their yoint measurement belongs o O C O(S)

Prop 2 \F two observables M") and M(2) with my and my outcomes wre,s;\vec{—,:ve\wjﬁ
ave O —compatible +hen

]_)(MH)’M(Z)) <! (1 it Amax(é))

' : mim;

J
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Detecting incompatibility

—
Prop : | p (M(”,Mm) 5 U (1 i Amax(é))

2 mim;

L thev MM and M(2) aye O —incompatible

Note: the obseyvables can still be compatible in the unvestyicted -Hneor\i

I Amax(@) =myj=my=d  +hen RHS equals P
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Detecting incompatibility

—
‘pVOP‘: \+ ]_) (M“)} M(Z)) N U (‘l Sk Amax(é))

2 mim;

L thew MM and M(2) aye O —incompatible

Note: the obsevvables can still be compatible in the unvestyicted -Hneor\i

H: Am(,vc(é;)) =T =My = d ’ -EL\QV\ ‘P\HS eo‘ua‘s I_)Eiz,d)!

~— OPERATION AL cONNECTION To NONCLASSICALITY
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Let O C O(S) be a vestriction with an operational dimension d
Let MD M2 € O be two observables with m; =m, = d outcomes

/—\
\§ P (Mm, M(z)) 2 Mo ’ thew

supexr nformation storability bolds ie

L

o~

AmaX(o) > d’ ’
andfor MM and M(2) aye @—incom‘\?’a-&ib\e. J
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Po(ygon state spaces

+two dichotomic weasw(ewewl:s
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Po(ygon state spaces

-|;WD c\‘c‘no-l;mm‘c vmeasw(ewev\%s

R O =sim(A)
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Folygon state spaces

measuy ements

+two c\‘dm‘l'xow"c
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