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Abstract: The formalism of quantum theory over discrete systems is extended in two significant ways. First, tensors and traceouts are generalized, so
that systems can be partitioned according to almost arbitrary logical predicates. Second, quantum evolutions are generalized to act over network
configurations, in such away that nodes be allowed to merge, split and reconnect coherently in a superposition. The hereby presented mathematical
framework is anchored on solid grounds through numerous lemmas. Indeed, one might have feared that the familiar interrelations between the
notions of unitarity, complete positivity, trace-preservation, non-signalling causality, locality and localizability that are standard in quantum theory
be jeopardized as the partitioning of systems becomes both logical and dynamical. Such interrelations in fact carry through, albeit two new notions
become instrumental: consistency and comprehension.

Joint work with Amélia Durbec and Matt Wilson
Reference: https.//arxiv.org/abs/2110.10587

Zoom Link: https://pitp.zoom.us/j/97185954578?2pwd=0C9mUz|4L 3V 4WDZzV EZoekpOS24wQT09
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Foreword » Tensors
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Foreword » Tensors
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Foreword » Tensors

A"

o e

Rk. Because discriminating criterion is quantized, so is the split into subsystems:
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Foreword » Tensors

u A% w
Rk. Entanglement is relative to the choice of X :
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® Generalised tensors & traces
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Gen. tensors & traces » Hilbert space

Def. System. internal state in 2., some (often finite) set.

g e unique name in )/, a countably infinite set.

Def. Graph. O . O
u A% w

Def. State. +Q§ 9 ’ (w)>
i ee

finite but unbounded set of systems.

(edges introduced later in the talk.)

G eq.

element of the Hilbert space whose o.n.b.
is the set of graphs.

) € H.
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Gen. tensors & traces » Restrictions

Afunction y : g — (@ /\ u u v

xX:G — G,CG
such that GXQHQG = GX:HX'

K B
@

Ex.
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Gen. tensors & traces » Restrictions

A function Xg — ¢
x:G — G,CG

such that GXQHQG = GX:HX'

Props. (o= 4 Gy
L

e XX=X» XX=Y L Gyue = Gy U Ge
e If X and ( are restrictions,sois Y U ( .

e (If X s arestriction sois XT that encompassing r-neighbours in the graphs.)
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Gen. tensors & traces » Tensors any restriction
internalized
A bilinear operator : H X m t
‘L) @ |R> — { ‘G) lfL:GX andR:Gy

0 otherwise
Ex.

N e =10 e

® %)= o
O) @, |O) = 0
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Gen. tensors & traces » Tensors

oef. |G)(H| 00 |G")(H'| := (|G) ¥ |G")((H| Q) (H'|)

Def. Ais X -consistentiff (H|A|Gy) #0 = |H) §Q) |Gy) #0

and same holds for A,

Prop. If A, A’ are X -consistent and B, B’ are Y—consistent then
(A®B)(A' ® B)= (A4 ® BB)
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Gen. tensors & traces » Traceouts

m Trace-class operators. .
A linear operator |X . T(H) — T(H) Internalized.

(IG)(H])|x = |Gx) (Hy|{H%|Gx)

“ (0 @)e @), = )e]
(‘O .><. QDD(U =0
(‘O .>< o Dlxu =0

u
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Gen. tensors & traces » Traceouts
A linear operator |X :T(H) = T(H)
(G {H|) x = |Gx) (Hx|(Hx|Gx)

Prop. |y isa TPCP.

Def. Comprehension.

C = X iff GXC — GC and <HZ‘GC> — <HX

Prop. C E X = (P1x)ic = pi¢

¢

G z)(Hx|Gx)
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® Generalised tensors & traces

e Why they work.
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Why they work. » Locality

. (H|A|G) = (H,|A|G,){Hx|Gx)

& A=A Q1
& Tr(Ap) = Tr(Apy)

. A x-local

[cos(.) —sin(.)]
// sin(.) cos(.)

cos(0).O—@—O
+ 5in(0).O—©—0

; Z

v
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Why they work. » Causality

Th.

~

(UpU)1c = (Upp U

& U decomposes into y-local gates.

M

A (-local = UAUT y-local

\—O0—0—0—0
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® Generalised tensors & traces
e Why they work.

e Applications?
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Applications? » Quantum Reference Frames...

...or simply taking the view of
a superposed observer, rather.
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_I_

has interaction graph :

— o[

| —T A

Time

... both feature fully quantum networks: “Space”
pace

» They need formalization.
» Unitarity, locality, causality of evolutions over them are poorly understood.

Pirsa: 22010090 Page 20/28




Applications? » Fully quantum networks
O @)eH |[O—@eH
u 1% u k 1%
Difficulty 1. Splitting through edges.
O) 0 @ =0 @) « |[O—@)
u A% u \% u \%
Difficulty 2. Unitarity versus node creation/destruction.

VS0 @) « |0 @)
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Applications? » Fully quantum networks » Names hold geomeS....q '

O @eH | - @eH

e =1 e

O) 0 @) = |O—@)

yV-z z yN=Z ‘
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Applications? » Fully quantum networks » Name algebra V
Bifhiettv-2—Unitar | — e

) 1O @) [0)

ulvu.r
B
O @) —=10)=]0 @)
v w vVw (vvw).l  (vVw).r
Thus, u.lVu.r =u (vVw).l=wv (vVw).r=w

Once these naming conventions adopted... all previous results carries through!
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Applications » Fully quantum networks » Locality

Th.  (H|A|G) = (H,|A|Gy){Hx|Gx) ‘

= A=A QI A '
& Trdp)=Tr(4py)
Ex.
A O—O— o0 -
XV(yV-z) (YVz)V-x
H H
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Applications » Fully quantum networks » Locality

O
Th.  (H|AIG) = (Hy|AIG\)(Hx|Gx) P
& A=A QI o ?':'\_O . o,-:l'“': o) =
& Tr(Ap) = Tr(Apy) O
X P~
Q 0 AN,
Ex. [cos(.) —sin(.)] o g > Wi | D
— sin(.) cos(.) O ...... Y
& cos(9).O O @ O—oO
xXV-y yv.z zZVX '
+sin(@).0—— ©
r XV(-yV-z (yVZ)V-x O .~
: 4 O &b i
- O O ® O O O g e o
XV-y yV.z zZV-X e v
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Applications » Fully quantum networks » Causality

o UpUc = Wonl }

< U decomposes into y-local gates. ’ _‘ |

Typically here ¢ = x,

| ) . / and % = T ="
Prop. Over name-preserving states, C E C .

Ex. Combining moves, coins upon walkers, and inflation rule at colliding walkers.

U=HCM

& A (-local = UAU' x-local
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® Generalised tensors & traces
e Why they work.

e Applications?
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Summary » arXiv:21;

Generalized tensors & traces »
A more precise notation. Parametrized by any restriction. Internalized.
Entanglement relative to the split.

Why they work. »
Locality, causality in the Shrédinger, Operational and Heisenberg pictures.
Safeguarding their logical interrelations.

Applications »

Taking the viewpoint of a superposed observer.

For the sake of indefinite causal orders or quantum gravity: formalizing fully
quantum networks; studying unitary, local and causal evolutions upon them.

Pirsa: 22010090 Page 28/28



