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Abstract: In thistalk, | will revisit the calculation of infinite-dimensional symmetries that emerge in the vicinity of isolated horizons. In particular, |
will focus my attention on extremal black holes, for which the isometry algebra that preserves a sensible set of asymptotic boundary conditions at
the horizon strictly includes the BM S algebra. The conserved charges that correspond to this BM S sector, however, reduce to those of superrotation,
generating only two copies of Witt algebra. For more genera horizon isometries, in contrast, the charge algebra does include both Witt and
supertrandlations, being similar to BMS but s.str. differing from it. | will also show how this is extended to the case of black holes in the
Einstein-Y ang-Mills case, where aloop algebra associated to the gauge group is found to emerge at the horizon.

Pirsa: 22010089 Page 1/38



The symmetries of the 1solated horizons

Gaston Giribet
University of Buenos Aires

QG Seminar — Perimeter Institute
Online, Thursday 27% January 2022

Pirsa: 22010089



Based on:
L. Donnay, G. Giribet, H. A. Gonzalez and M. Pino, Phys. Rev. Lett. 116, no. 9,
091101 (2016).
L. Donnay, G. Giribet, H. A. Gonzalez and M. Pino, JHEP 09, 100 (2016).

L. Donnay, G. Giribet, H. A. Gonzalez and A. Puhm, Phys. Rev. D98, no.12,
124016 (2018).

Motivation:
S. W. Hawking, [arXiv:hep-th/1509.01147].

S. W Hawking, M. J. Perry and A. Strominger, JHEP 05, 161 (2017).

S. W. Hawking, M. J. Perry and A. Strominger, Phys. Rev. Lett. 116, no. 23,
231301 (2016).

Pirsa: 22010089 Page 3/38



Based on collaborations with:

Laura Donnay, Hernan Gonzalez, Miguel Pino, Andrea Puhm,
Luciano Montecchio, Sasha Brenner, Julio Oliva, Andrés Anabalon.

And related work done by:

Glenn Barnich, Daniel Grumiller, Sasha Haco, Pierre-Henry Lambert,
Charles Marteau, Sabrina Pasterski, Robert Penna, Ricardo Troncoso,

Shahin Sheikh Jabbari, Andrew Strominger, Herman Verlinde, Céline
Zwikel, and many others.

Pirsa: 22010089 Page 4/38



BMS symmetry

. . . . . . . /
Infinite-dimensional symmetry at null intinity

Classics:

. Bondi, van de Burg & Metzner — Sachs, 1960’s: Gravitational waves in GR
in asymptotically flat spacetime

Recent:

. Infinite-dimensional (superrotation) extension of BMS [Barnich & Compere, 2006]
. BMS/CFT correspondence [Barnich & Troessaert, 2010]

. BMS and memory gravitational effect [Strominger & Zhiboedov, 2014]

. BMS, S-matrix and soft theorems [He, Lysov, Mitra & Strominger, 2014]

. Supertranslation at the black hole horizon [Hawking, Perry & Strominger, 2016]
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Infinite-dimensional symmetry at null intinity

goo = (=1 + O(1/7))e*’ + g4gUAUP A, B=20,¢

Gur — _628 /8 = 0(1/7"2)
gua = —gapU?® U4 = O(1/r%)
gap =1’yaB + O(r) det(gap) = det(van)

. Gravitational waves in asymptotically flat spacetimes
[Bondi, van de Burg & Metzner 1962, Sachs 1962]

OcGur = LeGu

§=P(2,2) 9,

o0
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Infinite-dimensional symmetry at null intinity
B

goo = (=1 + O(1/7))e*’ + g4gUAUP A, B=20,¢

Gur — _628 /8 = 0(1/7"2)
gua = —gapU?® U4 = O(1/r%)
gap =1’yaB + O(r) det(gap) = det(van)

. Gravitational waves in asymptotically flat spacetimes
[Bondi, van de Burg & Metzner 1962, Sachs 1962]

. Classical central extension for asymptotic symmetries
at null infinity [Barnich & Compere, 2006]

. Conformal symmetries of gravity from asymptotic
methods [Lambert, 2014]

. Supertranslations call for superrotations
[Barnich & Troessaert, 2011]

. Aspects of BMS / CFT correspondence
[Barnich & Troessaert, 2010]
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i Infinite-dimensional symmetry at null intinity

goo = (=14 O(1/r))e*’ + g,gUAUP A B=0,¢

Gor = —€%F B~ O(1/r?)

JvA = _QABUB UA ~ O(l/fr?)

JAB = TQ’YAB =t O(?“) det(gAB) = det(’yAB)

. A. Strominger, JHEP 07, 152 (2014).

. T. He, V. Lysov, P. Mbtra and A. Strominger, JHEP 05, 151 (2015).
+ A. Strominger and A. Zhiboedov, JHEP 01, 086 (2016).

+ A. Strominger, [arXiv:1703.05448|.

Memory

effects
Soft A Asymptotic
theorems symmetry
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The symmetries of the horizon
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Cfr. Ang /CFTQ

The isometries of AdS; are part of the conformal symmetry of the 1+1 dimensional field
theory. It would be interesting to understand what is the gravitational counterpart of the
full conformal symmetry group in 1+1 dimensions. [Maldacena, 1997]

The asymptotic symmetry group of three-dimensional gravity with a negative cosmological
constant is the local conformal group in 1+1 dimensions with a nontrivial central
extension, which turns out to be the Virasoro central charge. [Brown & Henneaux, 1986]

Git E—z +0(1) gu ~ f—z + O(1/r?) Gty = re 4 O(1) g1y ~0O(1)

[Lin, Ln] = (m — 1) Lintn + 35 0mtn,on(n® —1) 2

o _ C= 3@
L, Lyl = (m —n)Lmin + S0manon(n® —1
[ + 12 +n,

50(2,2) ~ sl(2,R) ® sl(2,R) € Vir @ Vir
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The infinite symmetries of black hole horizons

Let us start by considering the near horizon geometry of stationary black holes. Close to
the event horizon, we can always consider the spacetime metric in the form

ds? = =2k pdv? + 2dpdv + 2N 4 pdz2dv + Qamdzdz8 + ...

where the ellipsis stand for subleading terms. z# with A = 1,2 represents coordinates
on constant-v slices of the horizon, v € R being the advanced time (null) coordinate.
p € Rsy measures the distance from the horizon, which is located at p = 0. Functions
N4 and Q45 depend on the two coordinates 24, and in principle they might depend on
time as well . The specific form of the subleading terms is given by

Guo = _Q&K) T O(pQ) s GvA = NA(U? ZB) p+ O(pQ) s 9aB = QAB(@v ZC) 3 O(p) ’

where O(p") stand for functions on the coordinates whose dependence with p damps off
at least as fast as ~ p" when p tends to zero.
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The infinite symmetries of black hole horizons

Let us start by considering the near horizon geometry of stationary black holes. Close to
the event horizon, we can always consider the spacetime metric in the form

ds? = —2k pdv? + 2dpdv + 2N Al p dzdv +[Qap|dz4d2E + ...

where the ellipsis stand for subleading terms. z# with A = 1,2 represents coordinates
on constant-v slices of the horizon, v € R being the advanced time (null) coordinate.
p € Rsy measures the distance from the horizon, which is located at p = 0. Functions
N4 and Qg depend on the two coordinates 24, and in principle they might depend on
time as well . The specific form of the subleading terms is given by

gw =—=26p+OP?), goa =|Nalv,2%)p+O(p?), gap =|Qap(v,29)[+ O(p),

where O(p") stand for functions on the coordinates whose dependence with p damps off
at least as fast as ~ p™ when p tends to zero.
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The infinite symmetries of black hole horizons

Now, let us study the diffeomorphisms that preserve such a near horizon form of the
metric. To do that, we compute the Lie derivative d¢g,,, = L¢g,, with respect to a vector
field £ = £"0,, and demand it to preserve the boundary conditions at the horizon

§" =T+ 0(p),

1
£ = —0,T p+ ;' Na0sT p* + O(p°),
¢4 =LA+ Q*8 95T p+ O(p?),

where T is a function on v and 24, and L# is a function of z4. The expressions can
be considerably simplified if we consider the conformal gauge, which implies that L* are
conformal Killing vectors on the 2-sphere: 0;L* = 9,L* = 0, with z, Z being holomorphic
and anti-holomorphic coordinates on the spacelike sections of the horizon. Generalization
to the full Diff(S?) symmetry is also possible
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The infinite symmetries of black hole horizons
Variations generate a Lie algebra realized by the application
[0¢,, 06, )91 = 0¢Gu-
with

~

§ = &1, &) + 06261 — 016,

which suffices to take into account the dependence of £ on the metric functions. In this
way, we find the following algebra of diffeomorphisms

=T E T — a0 — T 0T,
= BPOpt — B aalt.

Pirsa: 22010089 Page 14/38



Symmetry algebra

Let us represent the asymptotic Killing vector as x = x(7T', L?, L*). By defining the
Fourier modes, Tim ) = x(2™2",0,0,0), Y, = x(0,0,—2"*1,0), Y, = x(0,0,0, —z"*1)

we find

where Tiz 2= Z T(m,n) ol
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Symmetry algebra

Let us represent the asymptotic Killing vector as x = x(7, L*, L*). By defining the
Fourier modes, T(m ) = x(2™2",0,0,0), Y, = x(0,0,—2"*1,0), Y, = x(0,0,0, —z"*1)

we find
:Ym? Yn] - (m . n)Ym—}-na ]
Yim, Y] = (m = 1)¥min, L (Wit ® Witt ) + 4i(1),
_kaT(m,n)] — _WLT(m+k,n)a
:Yk-, T(m,n)] == _nT(Tn,n-I-k)a
where T(2,2) = 3 Tpmm 2" 2", L(2) =3 Yae", L3 =Y %,
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Symmetry algebra

Let us represent the asymptotic Killing vector as x = x(7, L*, L*). By defining the
Fourier modes, T(m ) = x(2™2",0,0,0), Y, = x(0,0,—2"*1,0), Y, = x(0,0,0, —z"*1)

we find
:Ym? Yn] - (m . n)Ym—}-na ]
;Y"’”’Y”] = (m = n)¥mn, L (Witt@ Witt ) + (1), # BMS
_Yka T(m,n)] - _WLT(m+k,n)a
:Yk-, T(m,n)] o _nT(Tn,n-I-k)a
where T(2,2) = 3 Tium 2" 2™, L(z) =Y Va2, L3 =3 T.="
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Noether charges

These Noether charges can be Compﬁted

1 ETET—
[+

4

(1+ 22)

Integrability: Qup = Qyap, Yapdzridz® = sdzdz, Q10,0 = 24(Q)

Charge algebra: {Q¢, [P], Qs, [P} = 0, Q¢ [P] = —d¢, Qe, [P]
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Stationary black holes

The Kerr metric written in the Eddington-Finkelstein coordinates is given by

[y .
( A—Z . 2a(Z — A) sin® 6
ds? = ——— — 1) dv* +2dv dr — dv dp—
V3 ¥ L
—2 2A 2 .9
. =< —a*“Asin“0)sin“ 0
— 2asin® @ dr d¢ + 2d6?* + ( ) dy?,

2

where the functions A, =, and X are given by
A(ry =r*—2GMr+ad*, E@Fr)=r*+da*, XZ(r)=r*+a’cos?¥,

where M is the mass and a is the angular momentum per unit of mass. The outer horizon

of the Kerr black hole is located at 7, = GM + /G2M? — a2.

Pirsa: 22010089 Page 19/38



Stationary black holes

Close to the event horizon,

ds® = —2k pdv® + 2dpdv + 2N 4 pdz?dv + Qap dzd2® + ...

A'(ry) =2(r,)sin® 0

here - o Qe =3Y(ry), Qo,=0, ., = X
where K 2= (r,) 00 (7+), O - PP S(ry)
2a? sin 6 cos 0 ] aA'(r;)sin?@  2ar, Z(ry)sin*6
Ny = N, = — L 2 :
X(ry) 2(ry) 22(ry)
K AA
Q[1,0] = — 5 Q0,1 = Ma
| 2m 4G |
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Cosmological horizons

de Sitter space
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Stationary black holes and de Sitter space
The Schwarzschild-Taub-NUT /Bolt-de Sitter cosmological horizon

Charged, stationary black holes

Horizon charges for magnetized black holes

Gravitating monopoles in external magnetic field
Rindler horizons

The near horizon symmetries of the C-metric
Accelerated black holes in AdS

Black hole binary system

Non-Abelian horizons
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Higher-derivative corrections

The effective theory

1
167G

I = / dPx \/|(7| (R — 2A 4+ 01 Ry pa R*P7 + (Y%g R, R*" 4+ o3 R? + )
With a near horizon expansion of the form

gag = QB(2%) + Ap(v,29) p+ 0ap(v,2°) p* + ...
The Noether charges take the form

Q = Q(QaB, A\aB)

This capures the higher-curvature corrections to the area law

k A
B TE

+ O/ G)
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Stationary black holes and de Sitter space
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Higher-derivative corrections

The effective theory

1
167G

I = / dPx \/|(7| (%R —2A + a1 Ry oo R 4+ a2 Ry R* + 3 R? + )
With a near horizon expansion of the form

gaB = Qp(z%) + A, 2%) p+ Oap(v, 2%) p* + ...
The Noether charges take the form

Q = Q(QaB, A\aB)

This capures the higher-curvature corrections to the area law

k A
R TE

+ O/ G)
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Magnetized horizons

dr?

f(r)

ds* = |A(r, 9)\2( — f(r)dt* + + 7’2(192) + |A(r, 0)|"*r?*sin” 0 (d¢ — w(r, §)dt)*

L o, i : ;
A(r,0) =1+ 185(7‘2 sin® @ + ¢* cos” §) — iByq cosf

2M  ¢?
f(!) =1 — I_+?1_2
| 2 2 Ha i
w(r,0) = Byq| — (— — —) + —(r — 14 + rf(r)cos® 9) + wo,
| A 2

|A(r,0)] |A(r, 0)]

A, (r.6) _ 1 _1 5 (Re(;\(r. 9))) (Re(.f\(r. 0)) — 2)}

2g 3w(r,0
A,(r,0) = r’ + _2(8 ) _ Ay(r, 0)w(r.8).
0
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Magnetized horizons

2 2 2 1r? 2 102 \|—2 .2 - 2 \2
ds® = |A(r, 9)‘-( — f(r)dt* + }(T : - r“d@“) + |A(r, 8)|"“r°sin” 6 (do — w(r, 0)dt)”
-

 JP . |
A(r,0) =1+ IBé(r“ sin @ + ¢° cos® #) — iByq cosf .

oM ¢

fr)=1-—+73

i 2 2 2 _

w(r,8) = Bygq _— (,: = i) + %(r — 74 + rf(r) cos? 9)] + wp,
| 1| Re(A(r,0))\ /Re(A(r,0)) — 2
Ay(r,0) =— |1 .

(1, 9) By | +( A(r, 0)] )( A(r, 0)] )

| 2q 3w(r,0)

Ai(r,0) = — Ay(r,0)w(r.0),

(r,8) ==L+ 0T — Ay (r,0)u(r, 0
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Magnetized horizons

dr?

f(r)

dg?:|A(n9H2(-qudﬁ-+ +»ﬂd&ﬂ-+|A@:9n*%2snfe(do-xoaeynﬁ

Alr,0) =1+ IB(‘;(rz sin® @ + ¢* cos® ) — iByg cos 8 .

2M  ¢?
fry=1- 2 &
/2 2\ B2 ]
w(r,8) = Boq| — (— — —) + — (r — 14+ +rf(r)cos® 9) + wp ,
T\r T2

|A(r,0)| |A(r, 0)

A,(r.6) _ 1 '1 5 (Re(;\(r. 9))) (Re(;\(r. 0)) — 2)] N

29 3w(r,0 _ |
&wm:;+{g)—Amﬂpum
~L70)
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Magnetized horizons

‘ 2 1r® 2 102 \|—2. .2 - 2 2
( — f(r)dt® + M 1’"(19“) + |A(r,0)|"“r*sin” 0 (do — w(r, 0)dt)”
-

1 ., S - - kK A
BZ 2
QU =1] = q(1-=2%)
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Black hole memory effect

Plunging star %(
[

ds? = 1% (d0? + sin® 0dg?) o r2 (A6 + 6%d¢?)

}

ds? = r2 (d6%(1 — €(8)) + 62(1 + €(6))d¢?) = r2 (d6? + 62d¢?)

;

0 — 6 =0—10¢(6)

It’s a superrotation.

Gravitational perturbations of the horizon
[Suen, Price & Redmount 1988]

[Thorne, Price & Macdonald 1986]
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Black hole memory effect

2M M
ds® = g, dztdz” = (T -1+ 5D f) dv? + 2dvdr — D, (2 -

AM

r
+ (7‘2’)043 +2rDyDpf — ryapD*f )dZAdZB :

f + D*f) dvdz"

Pirsa: 22010089

Page 31/38



1 Black hole memory effect
La= T_DAf

T gl s

(r2yap + 2ry DsDpf)dz*dz? + ...

2M M

4M
ds® = Gppdxrde” = (T -1+ T—QDgf) dv? + 2dvdr — Dy (Qf —

r

f + D*f) dvdz"

+ (7"2%43 +2rD,Dgf — T"}"ABDQ_]C) dz4dzB .
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Non-Abelian horizons

R /d% |g|R—1] d*zy/|g| TrF?
M 4 J m

167G

We are interested in Einstein gravity coupled to Yang-Mills theory, and therefore we have to intro-
duce, in addition to the metric, the non-Abelian gauge field A%, which defines the gauge connection

1-form

A=A, T,dz",
with T}, being the generators of a Lie algebra g (with a = 1,2, ..., dim(g)), which satisfy the Lie product
[Tba TC] = zf(;lcTa

with f;. being the structure constants. Let G be a compact, semisimple Lie group generated by g,
which enters in the definition of the gauge theory through the standard building blocks: we have the

covariant derivative D, = 0, — z'aAﬁTa and the field strength F* = Fj, = O, AS — auAﬁ + « f,chgAf,
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Non-Abelian horizons

! /d4:c\/|g|R—l/ d*z+/|g| TrF?
M 4 m

167G

[Ym: Yn] . (m - n)Ym-i—na D_/my Yn] = (m - n)?m+'m
[Yka T(m,n)] - _mT(-m-i—k,n)a [?kaﬁm,n)] = _nT(m,n+k)a

[Yk, U(am,n)] - _mUFnz+k,71)7 [}7’?? U(an,n)] - _nU((-lfn,n-{-k)'f

T

[U(ak,i)’ U(bm,n)] o faft;) U(Ck-{-m,l-i-n)

1

( Wit ® Witt ) + 2i( 1)+ &,
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The extremal horizons

The Penrose diagram of an extremal, asymptotically flat black hole. Z* (Z7) is the
null future (past) infinity, 2" is the future horizon, i is spatial infinity, and s stands for
the timelike singularity. The red line delimits the near horizon region.
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BMS isometries of extremal horizons

These Noether charges can be compﬁted and take the relatively

Q[J, L4 = 16%0 / d?z \/det Qap (2J — LANA).

The zero modes of these charges reproduce the Wald entropy (for J = 27) and the angular
momentum (for L* — L* = 1)
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BMS isometries of extremal horizons

What we want to argue here is that the set of transformations strictly includes the
BMS algebra. To see this, consider the particular transformations obeying

1

A
J = 2DAL :

This particular subset of isometries yields the algebra

LA = LBopLs — LBOpLA
| 1 - BMS
P= 5JDIDAI/;‘ + LADAP, — §P2DAL{1 — FL Bl oPy,

which is actually the BMS algebra.

—1 .
The Noether charges: Q[LA] = 167 [dzz Vdet Qap LAN, ], Witt © Witt
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Summary

Close to their event horizons, black holes exhibit infinite-dimensional symmetries.

These symmetries correspond to asymptotic isometries that preserve a sensible set
of boundary conditions at the horizon.

These symmetries have Noether charges associated to them, which turn out to be
integrable, finite, and conserved.

The charges form an co-dimensional algebra, containing a Virasoro—Kac-Moody
system along with supertranslations.

These charges carry physical information about the black hole, like Wald formula.

This can be realized for charged, spinning Taub-NUT/Bolt (A)dS black holes with
acceleration and in presence of external fields in Einstein-Yang-Mills theory.
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