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Abstract: A salient feature of black holes near extremality is the appearance of an AdS$_2$ throat in their near-horizon geometry. Depending on the
underlying theory, these AdS$ 2$ throats may be unstable to fragmentation, wherein a single throat is instead replaced by a tree-like structure of
branched AdS$ 2$ throats. For Einstein-Maxwell theory, the underlying reason behind this instability is the existence of multi-centered
configuration in the moduli space of black hole solutions at fixed total charge. Given the success of the Schwarzian/SYK paradigm for
understanding a single AdS$ 2$ it is time to revisit the fragmentation story. To build up intuition, | will present a model, studied in the statistical
mechanics literature, that shares many features with SYK, including exact solvability at large-N and an emergent conformal symmetry that gets
weakly broken in the UV. The novel feature of this model is the appearance of a spin glass phase at O(1) temperatures, which | will try to relate to

the fragmentation story.
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Some (ancient) history

I will begin by reviewing some facts about ensembles with fixed
charge ) in Einstein-Maxwell theory in 4d flat space.

These issues were discussed in [Maldacena, Michelson, Strominger, 98]
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Some relevant history

A beautiful exact solution to Einstein-Maxwell theory is due to
[Majumdar '47 and Papapetrou '47]

A=—(1-HYdt and ds*=—-H *dt* + H*d7"

da
EOM: V2H =0 — H =1 _ Ga
g

» q, and %, are free parameters

» The constant 1 in H leads to flat space at large |Z|, but can
be omitted so that we have AdSy x S? at large distance.
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Some relevant history

Consider the following two geometries:

_ Qi1+Q: _ . Q Q
—jH =g zr—— —%—fm + a?f?/—~
- S 3

- AdSy x 2 _— |

—————

-

For large |Z| the geometries are equivalent, but the one on the
right flows from a single AdSy x S? to a pair of separate ones as
we approaches Ty /o
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Some relevant history

We can read off the difference between these two geometries
from the multipole moments of the electrostatic field at infinity.
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Some relevant history

We can read off the difference between these two geometries
from the multipole moments of the electrostatic field at infinity.

Moreover, there exists a Euclidean instanton discovered by [Brill
'92] that mediates between the two geometries.
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Interpretation?

Generally, whenever there exists an instanton that tunnels
between semiclassical states, we envision a (free) energy
landscape of minima of some potential

Don’t Ask
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Open questions

» In the age of the SYK/Schwarzian paradigm for describing
AdSs, can we accommodate this fragmentation picture?

» What is the order parameter that distinguishes between
the macroscopic states, dual to the nonzero dipole moment
of the fragmented geometry?

» The separation r = |¥1 — 2| has no potential, and changing

r does not spoil the SL(2,R) symmetries. Does this
correspond to a marginal aperator in the dual description?
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Multicentered black holes in String theory

Fragmented black hole solutions exist in string theory
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Quiver QM

The duals of these systems arise from compactifying string
theory on a Calabi-Yau threefold with D-branes wrapping
certain cycles.

These models are supersymmetric, so have fermions and bosons.
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Low energy EFT

Hint - Z

eyl

2
ey (ea o W)

0*W (4)
Rkl

a¢a
———— apﬁ? -+ h.c.)

where a labels pairs of branes that intersect inside the CY and
1=1,...,N, labels the number of light string states connecting
the branes.

W is an arbitrary polynomial of the ¢%, with coefficients
carying data from the compactification.
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Nontrivial model

Can consider the first nontrivial example:
L 42 23
W = Jijk@’ﬁ?; b5 P,

where we treat .J;; like a disorder, since it’s related to some
complicated CYj3 intersection numbers which we may not know
a priori.
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3. An SYK-like model
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The quantum p-spin model

Let us introduce a model of N bosons ¢;, studied by [Cugliandolo,

Grempel, da Silva Santos, '01]:

Z = /Dgz- exp{—fj dr [%@(7)0‘-@(7—)+J@-1_..z-pa@-1(’r)...crz-p(fr)j} ,

with a spherical constraint:

N
Z o;(T)oi(t) = N
i=1

and disordered couplings sampled from:

I\ szgl...z'p
pl J?

P(Jiy..4,) o< exp [—
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Disorder average

As usual we want to compute

BF = —/dJil...@pP(Jz'l...z'p)log ZJiy.in) 5

but this requires us to compute Z[J;, . ; | for arbitrary
couplings. Use:
log Z = lim 0, 2"

n—0

and take the average of Z" for integer n:

ﬁ:/djilmipp(bfilmip)/DO‘,?DZG :

- {_ ]06 5 %aﬁfr)ag(r) +J?;1.,,ipaf’1(’r)...afp(’r)]

+i /O‘ﬁ dr 2%(7) (oi (1)oi' (1) — N)} :
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Disorder average

Like in SYK, the disorder average couples replicas. To proceed,
we introduce a bi-local variable:

N Qup(T, ") ZJO’(I

and the effective bi-local action is:

'S;;H = ——Trlog {Qab 7, 7) —zZ/ dr z2%(7) (Qua(T,7) — 1)

2
_ Z /0 /0 dr dr’ [(Sab(S(T - T’)76$Qab(v ') + / - Qa(T:7 '

where the 2% are Lagrange multipliers to impose the spherical
constraint QQuq(0) = 1.
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‘ . : - ] - ¢ = -
Schwinger-Dyson equations

Like in SYK, we can derive the Schwinger-Dyson equations.
M
— dab [783 4 iza’(’r)] Qup(T,T)

pJ? 4 1 Ap—1 /" w1 /
— dr Qac (TaT )QCb(T » T ) — _6ab 6(7_ = 0 ) 7
4 Jy 2
3
Dropping the first line and taking Q),, = Q(7)d,; gives us the
SD equations of the SYK model, with the known late time

conformal solution.
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Important Caveat

Going back to the original definition, for a # b:

Qe ') = %2 - %Z (ot (M)

where (-) denotes a thermodynamic average in a single replica
and A denotes a disorder average. In SYK the fundamental d.o.f
were fermions and could not obtain vevs. Here they can and do.
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In fact the low temperature thermodynamics requires that we
consider the following 1-RSB ansatz for consistency

(q(lr, 7 u u
u q(r,7") u 0
u u q(1,7")
Q= g7 o) u u
0 u q(1,7") u
U U q(1,7")

\ f )

where the off-diagonal component u measures the overlap
between replicas. There is an additional parameter m which
determines the size of the diagonal blocks.
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SD equations revisited

On this subspace we have:

pJ? [”
4 0

and boundary condition ¢(0) = 1. The parameters v and m are
determined by some complicated equations that I will not show.
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In fact the low temperature thermodynamics requires that we
consider the following 1-RSB ansatz for consistency

(q('r,'r’) u u \

u q(r,7") w, 0
/
u u q(7,7")
Q= g7 o) u u
0 u q(1,7") u
u u q(1,7")

\ f )

where the off-diagonal component u measures the overlap
between replicas. There is an additional parameter m which
determines the size of the diagonal blocks.
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SD equations revisited

On this subspace we have:

pJ? p " pil 1myp—1 "o
+T A dr" (uP™ = q(r, 7)) (u—q(7", 7)) ,

and boundary condition ¢(0) = 1. The parameters v and m are
determined by some complicated equations that I will not show.
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SD equations revisited

—%5(7 -7 = [%83 -+ ZZ(T)] q(t, ")
pJ* B n( p—1 mp—1 "ot
+T . dr (u _Q(T:T ) ) (U_Q(T 77_)) 3

Depending on the relative sizes of 3.J and M/j3, for couplings
where © = 0 we can have conventional SYK behavior with

I _
g(t) o |7|72/P

Caveat, this conformal solution is not the global minimum of
the F, in this phase—the state is gapped.
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In fact the low temperature thermodynamics requires that we
consider the following 1-RSB ansatz for consistency

I

(q('r, ) u u
u q(r,7") u 0
u u q(1,7")
Q= g7, ) u u
0 u q(7,7") u
U U q(1,7")

\ s )

where the off-diagonal component u measures the overlap
between replicas. There is an additional parameter m which
determines the size of the diagonal blocks.
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SD equations revisited

1 /
—=§(t—7) = [%83 + ZZ(T)] q(r, 7"
pJ* 2 n( p—1 mp—1 "ot
+—4 i dr (u —q(7r, ") )(u—q('r,'r)) ,

Depending on the relative sizes of 3.J and M/j3, for couplings
where © = 0 we can have conventional SYK behavior with

g(t) o |7|72/P

Caveat, this conformal solution is not the global minimum of
the F, in this phase—the state is gapped.
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i~ contd

Defining
G (1,7') = G:(0)0(7, ") + (Or — 0r) yr (1, 7')
then y, satisfies the ¢ = 2 SYK equations,

jQUp—2
—§(r,7") =
(7,7) v

B
| a )
0

which suggests ¢, is the correlator for a field of conformal
dimension A =1 .

A new marginal operator has appeared.
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Subltety with m

On this solution m does not satisty the SD equations. So the
conformal solution is not an equilibrium solution of this
ensemble.

Can deal with this by changing to an ensemble where replica
symmetry is explicitly broken [Mezard, '99]. This gives:

Seff(Q*) .
N e

m now acts as a fugacity for F' much like (3 is a fugacity for E.
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In fact the low temperature thermodynamics requires that we
consider the following 1-RSB ansatz for consistency

(q(’r, 7 u U B \

u q(7,7") u 0
u u—— q(r,7)
Q= g7 o) u u
0 u q(1,7") u
u u q(1,7")

\ f )

where the off-diagonal component u measures the overlap
between replicas. There is an additional parameter m which
determines the size of the diagonal blocks.
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Subltety with m

On this solution m does not satisty the SD equations. So the
conformal solution is not an equilibrium solution of this
ensemble.

Can deal with this by changing to an ensemble where replica
symmetry is explicitly broken [Mezard, '99]. This gives:

Seff(Q*) .
~ Nm e

m now acts as a fugacity for F' much like 3 is a fugacity for F.
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Disorder average

As usual we want to compute

BF — — / dTsy..i. P(Jiy..i) 108 ZTiy. 0]

but this requires us to compute Z[J;, ;| for arbitrary
couplings. Use:
log Z = lim 0, 2"

n—0

and take the average of Z" for integer n:

ﬁ:/djil.._ipP(Jq;l__q;p)fDO‘,?DZa

exp {—foﬁ dr [%d?(ff}df(’f) + iy iy O3 (T) - - -Jé‘p(’r)]
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Subltety with m

On this solution m does not satisty the SD equations. So the
conformal solution is not an equilibrium solution of this
ensemble.

Can deal with this by changing to an ensemble where replica
symmetry is explicitly broken [Mezard, '99]. This gives:

Seff(Q*) o
N P

m now acts as a fugacity for F' much like 3 is a fugacity for F.
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Thermodynamic analogy /interpretation

Usual case % = BF"

S=—-0rF, E=20858F).

SG phase % = fmd:
Y = —01m(8®) , F =0, (m®) .

The quantity X is an entropy-like quantity that counts
metastable states.
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In fact the low temperature thermodynamics requires that we
consider the following 1-RSB ansatz for consistency

(q('r, ) U U
w  Cq(T,T) u 0
U U q(1,7")
Q = q(r,7") u u
0 U q(1,7") u
U U q(1,7")

\ f )

where the off-diagonal component u measures the overlap
between replicas. There is an additional parameter m which
determines the size of the diagonal blocks.
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For u # 0, however we are compelled to write
q(t, ™) = qr(1,7) + u

where ¢, much smaller than « in the late time limit. Expanding
the SD equations gives:

S e By R R )

<ot - £

Pirsa: 22010085 Page 35/45



Thermodynamic analogy/interpretation

Usual case % = BF"

S=-8;F, E=0s(8F) .
L

SG phase % = fmd:
2= _81/m(6q)) 3 F= am(mq)) .

The quantity X2 is an entropy-like quantity that counts
metastable states.
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Bulk interpretation?

Can we tie the appearance of u # 0 to the fact that we have
developed a nonzero averaged dipole moment over the space of
low temperature bulk configurations?

Is the appearance of a A = 1 mode in the model also be tied to
the moduli-space mechanics of moving the separate AdSs
throats?

Is ¥ counting a regularized moduli space volume for the
throats?
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Interpretation?

The picture I told about fragmentation is only part of the story.
Each individual throat can also split up into its own set of
fractal like throats.

So perhaps there should be an infinite number of order
parameters (for each multipole moment) as well as a huge set of
marginal operators, to accurately describe the bulk.

But in the spiritkof being playful, let us look at the features this
model has to offer.
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4. Out-of-Time-PDrdered-Correlators
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To get at the OTOCs, we need the four point function
F=(K-1)""

where

—2
p—2

K(71,72;73,74) = (BT)? [grs(T12) + U]pT
X [@rx(T13) @rsc(T24) + V] [@ra(734) + 1] =
and

0 (paramagnet,)

= p m2u2

p—2m(p—1)°—p(p—2)

(marginal spin glass)

Page 40/45



There exists an exponential OTOC everywhere on this phase
diagram

1/(MJ) 4

ot

_ paramagnetic
e T (u=0,m=1)

| 0.3

02

spin glass
(0<u;m < 1}

AL x /2w

lassical 01

T . . 1/(M.J)

But A7, — 0 at zero temperature in the glass phase. This is
expected since the glasses are rigid!

Pirsa: 22010085 Page 41/45



Conclusions

» Today we identified a transition in GR that would be
interesting to understand

» Looked at a toy model that shares some features

» Has the potential to connect to more string theoretic

models.
N

» Should try and understand the EFT from the bulk side to
make progress [WIP w/ A. Castro, C. Toldo and E. Verheijden]
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Nontrivial model

Can consider the first nontrivial example:

1,2 .3
W = Jijk9; &7 P,
N
where we treat .J;; like a disorder, since it’s related to some

complicated CY3 intersection numbers which we may not know
a priori.
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Low energy EFT

Hint - Z

eyl

2
ey (ea o W)

0*W (4)
Rkl

ﬁqba
——— apﬁ? + h.c.)

where a labels pairs of branes that intersect inside the CY and
1=1,...,N, labels the number of light string states connecting
the branes.

W is an arbitrary polynomial of the ¢%, with coefficients
carying data from the compactification.
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Nontrivial model

Can consider thIe first nontrivial example:
1 42 .8
W = Jijk¢; &5 Pk

where we treat .J;; like a disorder, since it’s related to some
complicated CY3 intersection numbers which we may not know
a priori.
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