Title: TBA

Speakers: Beatriz Elizaga

Series: Strong Gravity

Date: January 13, 2022 - 1:00 PM

URL: https://pirsa.org/22010081

Abstract: Abstract: TBD

Zoom Link: https://pitp.zoom.us/j/96387248110?pwd=U0xLNldzMldKbmhPc1V0SEhzdkJNZz09

Pirsa: 22010081 Page 1/61

Pre-inflationary effects on the primordial power spectrum: GR vs. LQC

[Based on JCAP 09 (2021) 030]

January 13th, 2022 Perimeter Institute - Strong gravity seminar

B. Elizaga Navascués (JSPS fellow, Waseda University, Japan) G.A. Mena Marugán (IEM, CSIC, Spain)

Pirsa: 22010081 Page 2/61

Motivation

- Beatriz Elizaga Nava...
- Standard cosmological model with inflation is extremely successful describing primordial inhomogeneities.
- Is it completely satisfactory, considering the primeval stages of the Universe with very high curvature?
- Theoretically:
 - **★** Big-Bang singularity: loss of predictability.
 - **★** Quantum gravity phenomena?
 - **★** Non-inflationary epoch: State for the perturbations?

Pirsa: 22010081 Page 3/61

Motivation

- Standard cosmological model with inflation is extremely successful describing primordial inhomogeneities.
- Is it completely satisfactory, considering the primeval stages of the Universe with very high curvature?
- Observationally:
 - ★ Angular power spectrum in CMB: Anomalies
 - ★ Power suppression $\ell \leq 30$, lensing amplitude > 1, ...
 - ★ Strongly affected by cosmic variance, but could point to new physics Planck regime of the Universe?

Pirsa: 22010081 Page 4/61

Motivation

- Beatriz Elizaga Nava...
- Standard cosmological model with inflation is extremely successful describing primordial inhomogeneities.
- Is it completely satisfactory, considering the primeval stages of the Universe with very high curvature?
- Theoretical and observational concerns.
- Promising candidate: Loop Quantum Cosmology (LQC).
- Typically includes a classical pre-inflationary epoch.
- Robust predictions **require** disentangling LQC from GR effects on the evolution of the perturbations.

Pirsa: 22010081 Page 5/61

Loop Quantum Cosmology: Mukhanov-Sasaki equations

Pirsa: 22010081 Page 6/61

What is LQC?

- Canonical quantization program for spacetimes with high degree of symmetry: e.g. cosmological spacetimes.
- Techniques from the non-perturbative theory of LQG.
- In e.g. FLRW-type cosmologies with massless scalar field, well-defined Hilbert space with nice physical properties:
 - **★** Energy density operator bounded from above.
 - ★ States of zero-volume are dynamically decoupled.
 - ★ Spectral analysis: Strong evidence for the quantum resolution of the cosmological singularity.

e.g. [A. Ashtekar et al., Phys. Rev. Lett. 96 (2006) 141301; M. Martín-Benito et al., Phys. Rev. D 80 (2009) 104015]

Pirsa: 22010081 Page 7/61

What is LQC?

- Canonical quantization program for spacetimes with high degree of symmetry: e.g. cosmological spacetimes.
- Techniques from the non-perturbative theory of LQG.
- In e.g. FLRW-type cosmologies with massless scalar field, well-defined Hilbert space with nice physical properties.
- Provides mechanisms to resolve Big-Bang singularity
 Big Bounce.
- Can be combined with standard quantum field theory techniques to include inhomogeneities.

Pirsa: 22010081 Page 8/61

Effective LQC

- FLRW-type spacetime with massless scalar field ϕ .
- Family of physical states with Gaussian behavior, peaked in the geometry for all values of ϕ .
- Trajectories of peaks are relativistic for low energies, departures close to Planck density bounce.
- Modified Friedmann equations, $\rho_c \simeq 0.41$ (Planck units):

$$\left(\frac{a'}{a}\right)^2 = \frac{8\pi}{3}a^2\rho\left(1 - \frac{\rho}{\rho_c}\right), \qquad \rho = \frac{1}{2}\left(\frac{\phi'}{a}\right)^2,$$

$$\phi'' + 2\frac{a'}{a}\phi' = 0$$

Perturbations in LQC

- Beatriz Elizaga Nava...
- Hybrid quantization of perturbed cosmology with inflaton:
 - **★** Background cosmology: LQC techniques.
 - ★ Gauge-invariant perturbations: Fock representation.
- Canonical formulation \longrightarrow Zero-mode of the Hamiltonian constraint: FLRW + Mukhanov-Sasaki Hamiltonians.
- Physical states should only depend on the background cosmology and the gauge-invariant perturbations.
- Physical states should be annihilated by the Hamiltonian constraint operator, couples background and perturbations.

e.g. [L. Castelló Gomar et al., JCAP 06 (2015) 045]

Pirsa: 22010081 Page 10/61

Mukhanov-Sasaki equations

- Physical states should be annihilated by the constraint.
- Focus on states with small backreaction on background.
- Mean-field approximation on constraint equation
 - Effective constraint for the perturbations, depends on background geometry via expectation values.
- Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}^{"} + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0, \qquad s_{\text{eff}} = s_{\text{eff}}(\eta)$$

Mass codifies LQC effects on the background.

e.g. [L. Castelló Gomar et al., JCAP 06 (2015) 045]

Pirsa: 22010081 Page 11/61

Mukhanov-Sasaki equations

Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

• Restrict to background states with effective LQC behavior:

$$\left(\frac{a'}{a}\right)^2 = \frac{8\pi}{3}a^2\rho\left(1 - \frac{\rho}{\rho_c}\right), \qquad \rho = \frac{1}{2}\left(\frac{\phi'}{a}\right)^2 + V(\phi),$$
$$\phi'' + 2\frac{a'}{a}\phi + a^2V_{,\phi} = 0$$

• For these states, the mass can be evaluated on the peaks:

$$s_{\text{eff}} = -\frac{4\pi G}{3}a^2(\rho - 3P) + \mathcal{U}$$

Cosmological solutions

Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

- Restrict to background states with effective LQC behavior.
- Phenomenologically interesting solutions: Large observable scales a/k today were \sim order of curvature at the bounce.
- They are all such that $\rho_B^{kin} \gg V(\phi_B)$,

$$\rho_c = \rho_B^{kin} + V(\phi_B), \qquad \rho_B^{kin} = \frac{1}{2} \left(\frac{\phi_B'}{a_B} \right)^2$$

e.g. [I. Agullo and N.A. Morris, Phys. Rev. D 92 (2015) 124040]

Pirsa: 22010081 Page 13/61

Cosmological solutions

• Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

- Restrict to background states with effective LQC behavior.
- Phenomenologically interesting solutions: Large observable scales a/k today were \sim order of curvature at the bounce.
- They are all such that $\rho_B^{kin} \gg V(\phi_B)$.
- They imply a short-lived inflation (≥ 65 e-folds), and a classical deccelerated preinflationary expansion.

Pirsa: 22010081 Page 14/61

• Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}^{"} + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

• Focus on phenomenologically interesting effective LQC solutions, e.g. for $V(\phi) = m^2 \phi^2 / 2$, $m = 1.2 \times 10^{-6}$, $\phi_B = 0.97$:

Fig. from [BEN et al., Universe 4 (2018) 98]

LQC GR!! Kinetically dominated (KD) period + Slow-roll inflation

Pirsa: 22010081 Page 15/61

Pirsa: 22010081 Page 16/61

Perturbations in KD period

- Deep in the pre-inflationary epoch, the potential is completely negligible compared with kinetic energy.
- Approximate this classical epoch (η_0, η_i) as a Friedmann universe with a massless scalar field:

$$a(\eta) = a_0 \sqrt{1 + 2a_0 H_0(\eta - \eta_0)}, \qquad \rho(\eta) = \rho_0 \left[\frac{a_0}{a(\eta)} \right]^6$$

where
$$H = \sqrt{8\pi\rho/3}$$
, $H_0 = H(\eta_0)$, $a_0 = a(\eta_0)$.

- ★ Time where quantum geometry effects are negligible, for the effective LQC solutions.
- * Alternatively, in a pure GR model η_0 can be arbitrarily close to the singularity.

Pirsa: 22010081 Page 17/61

Perturbations in KD period

- Deep in the pre-inflationary epoch, the potential is completely negligible compared with kinetic energy.
- Approximate this classical epoch (η_0, η_i) as a Friedmann universe with a massless scalar field:

$$a(\eta) = a_0 \sqrt{1 + 2a_0 H_0(\eta - \eta_0)}, \qquad \rho(\eta) = \rho_0 \left[\frac{a_0}{a(\eta)} \right]^6$$

where
$$H = \sqrt{8\pi\rho/3}$$
, $H_0 = H(\eta_0)$, $a_0 = a(\eta_0)$.

• Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + (k^2 + s_{\text{kin}}) v_{\overrightarrow{k}} = 0, \qquad s_{\text{kin}} = \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0} \right)^{-2}$$

Pirsa: 22010081 Page 18/61

Perturbations in KD period

• Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + (k^2 + s_{\text{kin}}) v_{\overrightarrow{k}} = 0, \qquad s_{\text{kin}} = \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0} \right)^{-2}$$

• General (isotropic) solutions:

$$\mu_k = C_k \sqrt{\frac{\pi y}{4}} H_0^{(1)}(ky) + D_k \sqrt{\frac{\pi y}{4}} H_0^{(2)}(ky), \qquad y = \eta - \eta_0 + \frac{1}{2H_0 a_0}$$

• They provide normalized positive-frequency solutions if:

$$\mu_k \mu_k^{*'} - \mu_k' \mu_k^* = i$$
 $|D_k|^2 - |C_k|^2 = 1$

Perturbations in de Sitter

- Beatriz Elizaga Nava...
- The evolution of the Universe during slow-roll inflation is of quasi-de Sitter type.
- For our purposes here, we ignore transition effects and deviations from an exact de Sitter phase.

Pirsa: 22010081 Page 20/61

Perturbations in de Sitter

- The evolution of the Universe during slow-roll inflation is of quasi-de Sitter type.
- Approximate the inflationary period $[n_i, \eta_{end}]$ as de Sitter:

$$a(\eta) = \left[a_i^{-1} - H_{\Lambda}(\eta - \eta_i) \right]^{-1}, \qquad a_i = a_0 \sqrt{1 + 2a_0 H_0(\eta_i - \eta_0)}$$
where $H_{\Lambda} = \sqrt{8\pi \rho_0 / 3} \left(a_0 / a_i \right)^3$.

• Mukhanov-Sasaki equations:

$$v_{\vec{k}}'' + (k^2 + s_{dS}) v_{\vec{k}} = 0, \qquad s_{dS} = -2H_{\Lambda}^2 \left[a_i^{-1} - H_{\Lambda} (\eta - \eta_i) \right]^{-2}.$$

Pirsa: 22010081 Page 21/61

Perturbations in de Sitter

• Mukhanov-Sasaki equations:

$$v_{\vec{k}}'' + (k^2 + s_{dS}) v_{\vec{k}} = 0, s_{dS} = -2H_{\Lambda}^2 [a_i^{-1} - H_{\Lambda}(\eta - \eta_i)]^{-2}.$$

• General (isotropic) solutions:

$$\begin{split} \mu_k &= A_k \frac{e^{ik(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})}}{\sqrt{2k}} \left[1 + \frac{i}{k(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})} \right] \\ &+ B_k \frac{e^{-ik(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})}}{\sqrt{2k}} \left[1 - \frac{i}{k(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})} \right] \end{split}$$

• They provide normalized positive-frequency solutions if:

$$|B_k|^2 - |A_k|^2 = 1$$

Pirsa: 22010081 Page 22/61

Inflation with KD epoch in GR

- Approximate pre-inflationary epoch (η_0, η_i) as a Friedmann universe with a massless scalar field.
- Approximate the inflationary period $[\eta_i, \eta_{end}]$ as de Sitter.
- Instantaneous transition between both periods.
- Approximate Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + \left(k^2 + \tilde{s}_{GR}\right) v_{\overrightarrow{k}} = 0,$$

$$\tilde{s}_{GR} = \begin{cases} \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0}\right)^{-2}, & \eta \in (\eta_0, \eta_i) \\ -2H_{\Lambda}^2 \left[a_i^{-1} - H_{\Lambda}(\eta - \eta_i)\right]^{-2} & \eta \in [\eta_i, \eta_{end}] \end{cases}$$

Pirsa: 22010081 Page 23/61

Inflation with KD epoch in GR

• Approximate Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}^{"} + \left(k^2 + \tilde{s}_{GR}\right) v_{\overrightarrow{k}} = 0,$$

$$\tilde{s}_{GR} = \begin{cases} \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0} \right)^{-2}, & \eta \in (\eta_0, \eta_i) \\ -2H_{\Lambda}^2 \left[a_i^{-1} - H_{\Lambda} (\eta - \eta_i) \right]^{-2} & \eta \in [\eta_i, \eta_{\text{end}}] \end{cases}$$

- Solutions in each epoch can be matched by continuity.
- Fixing initial conditions in the KD regime fixes the state of the perturbations during de Sitter inflation (and conversely):

$$A_k = A_k(C_k, D_k), \qquad B_k = B_k(C_k, D_k)$$

Pirsa: 22010081 Page 24/61

Pirsa: 22010081 Page 25/61

- Phenomenologically interesting solutions in effective LQC: Kinetic domination around the bounce: $V(\phi) \simeq 0$.
- Background equations are analytically solvable:

$$\dot{\phi}(t) = \pm \sqrt{2\rho_c} a^{-3}(t), \qquad a(t) = \left(1 + 24\pi\rho_c t^2\right)^{1/6},$$

$$\eta - \eta_B = {}_2F_1\left(\frac{1}{6}, \frac{1}{2}; \frac{3}{2}; -24\pi\rho_c t^2\right)t$$

• Then, Mukhanov-Sasaki equations with $V(\phi) = 0$:

$$v_{\overrightarrow{k}}^{"} + (k^2 + s_h^{\text{kin}}) v_{\overrightarrow{k}} = 0, \qquad s_h^{\text{kin}} = \frac{8\pi\rho_c}{3} (1 + 24\pi\rho_c t^2)^{-2/3}$$

We do not know their analytic solutions (yet...).

Pirsa: 22010081

Inflation with KD epoch in GR

- Approximate pre-inflationary epoch (η_0, η_i) as a Friedmann universe with a massless scalar field.
- Approximate the inflationary period $[\eta_i, \eta_{end}]$ as de Sitter.
- Instantaneous transition between both periods.
- Approximate Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + \left(k^2 + \tilde{s}_{GR}\right) v_{\overrightarrow{k}} = 0,$$

$$\tilde{s}_{GR} = \begin{cases} \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0}\right)^{-2}, & \eta \in (\eta_0, \eta_i) \\ -2H_{\Lambda}^2 \left[a_i^{-1} - H_{\Lambda}(\eta - \eta_i)\right]^{-2} & \eta \in [\eta_i, \eta_{\text{end}}] \end{cases}$$

Pirsa: 22010081 Page 27/61

Cosmological solutions

Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

- Restrict to background states with effective LQC behavior.
- Phenomenologically interesting solutions: Large observable scales a/k today were \sim order of curvature at the bounce.
- They are all such that $\rho_B^{kin} \gg V(\phi_B)$.
- They imply a short-lived inflation (≥ 65 e-folds), and a classical deccelerated preinflationary expansion.

Pirsa: 22010081 Page 28/61

Cosmological solutions

Effective Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + [k^2 + s_{\text{eff}}]v_{\overrightarrow{k}} = 0$$

- Restrict to background states with effective LQC behavior.
- Phenomenologically interesting solutions: Large observable scales a/k today were \sim order of curvature at the bounce.
- They are all such that $\rho_B^{kin} \gg V(\phi_B)$,

$$\rho_c = \rho_B^{kin} + V(\phi_B), \qquad \rho_B^{kin} = \frac{1}{2} \left(\frac{\phi_B'}{a_B}\right)^2$$

e.g. [I. Agullo and N.A. Morris, Phys. Rev. D 92 (2015) 124040]

Pirsa: 22010081 Page 29/61

LQC with short-lived inflation

Pirsa: 22010081 Page 30/61

- Phenomenologically interesting solutions in effective LQC: Kinetic domination around the bounce: $V(\phi) \simeq 0$.
- Background equations are analytically solvable:

$$\dot{\phi}(t) = \pm \sqrt{2\rho_c} a^{-3}(t), \qquad a(t) = \left(1 + 24\pi\rho_c t^2\right)^{1/6},$$

$$\eta - \eta_B = {}_2F_1\left(\frac{1}{6}, \frac{1}{2}; \frac{3}{2}; -24\pi\rho_c t^2\right)t$$

• Then, Mukhanov-Sasaki equations with $V(\phi) = 0$:

$$v_{\overrightarrow{k}}^{"} + (k^2 + s_h^{\text{kin}}) v_{\overrightarrow{k}} = 0, \qquad s_h^{\text{kin}} = \frac{8\pi\rho_c}{3} (1 + 24\pi\rho_c t^2)^{-2/3}$$

We do not know their analytic solutions (yet...).

- Ignoring transition effects, we can approximate $V(\phi) \simeq 0$ until the onset of inflation at η_i .
- On the other hand, the strong LQC effects are relevant only in a very narrow interval around the bounce.
- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.

Pirsa: 22010081 Page 32/61

- Ignoring transition effects, we can approximate $V(\phi) \simeq 0$ until the onset of inflation at η_i .
- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.
- Then, we can approximate the period (η_0, η_i) by a classical universe with a massless scalar field, with initial data:

$$a_0 = (1 + 24\pi\rho_c t_0^2)^{1/6}, \qquad \rho_0 = \rho_c a_0^{-6}$$

• Studying the relative difference between $s_h^{\rm kin}$ and $s_{\rm kin}$ we find that for $t_0 \gtrsim 0.4$ the error is no bigger than a 3 %.

Pirsa: 22010081 Page 33/61

- Phenomenologically interesting solutions in effective LQC: Kinetic domination around the bounce: $V(\phi) \simeq 0$.
- Background equations are analytically solvable:

$$\dot{\phi}(t) = \pm \sqrt{2\rho_c} a^{-3}(t), \qquad a(t) = \left(1 + 24\pi\rho_c t^2\right)^{1/6},$$

$$\eta - \eta_B = {}_2F_1\left(\frac{1}{6}, \frac{1}{2}; \frac{3}{2}; -24\pi\rho_c t^2\right)t$$

• Then, Mukhanov-Sasaki equations with $V(\phi) = 0$:

$$v_{\overrightarrow{k}}^{"} + (k^2 + s_h^{\text{kin}}) v_{\overrightarrow{k}} = 0, \qquad s_h^{\text{kin}} = \frac{8\pi\rho_c}{3} (1 + 24\pi\rho_c t^2)^{-2/3}$$

We do not know their analytic solutions (yet...).

Pirsa: 22010081 Page 34/61

- Ignoring transition effects, we can approximate $V(\phi) \simeq 0$ until the onset of inflation at η_i .
- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.
- Then, we can approximate the period (η_0, η_i) by a classical universe with a massless scalar field, with initial data:

$$a_0 = (1 + 24\pi\rho_c t_0^2)^{1/6}, \qquad \rho_0 = \rho_c a_0^{-6}$$

• Studying the relative difference between $s_h^{\rm kin}$ and $s_{\rm kin}$ we find that for $t_0 \gtrsim 0.4$ the error is no bigger than a 3 %.

Pirsa: 22010081 Page 35/61

Pöschl-Teller approximation

- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.
- Around the bounce, approximate s_h^{kin} by

$$s_{\text{PT}} = \frac{U_0}{\cosh^2[\alpha(\eta_0 - \eta_B)]}, \qquad U_0 = \frac{8\pi\rho_c}{3}, \qquad \alpha = \frac{\operatorname{arcosh}(a_0^2)}{(\eta_0 - \eta_B)}$$

so that $s_{\text{PT}}(\eta_B) = s_h^{\text{kin}}(\eta_B)$ and $s_{\text{PT}}(\eta_0) = s_{\text{kin}}(\eta_0)$?

Pirsa: 22010081 Page 36/61

Pöschl-Teller approximation

- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.
- Around the bounce, approximate s_h^{kin} by

$$s_{\text{PT}} = \frac{U_0}{\cosh^2[\alpha(\eta - \eta_B)]}, \qquad U_0 = \frac{8\pi\rho_c}{3}, \qquad \alpha = \frac{\operatorname{arcosh}(a_0^2)}{(\eta_0 - \eta_B)}$$

so that $s_{\text{PT}}(\eta_B) = s_h^{\text{kin}}(\eta_B)$ and $s_{\text{PT}}(\eta_0) = s_{\text{kin}}(\eta_0)$?

• To check its goodness, we define the approximate mass:

$$\tilde{s}_h = \begin{cases} U_0 \cosh^{-2}[\alpha(\eta - \eta_B)], & \eta \in [\eta_B, \eta_0], \\ \tilde{s}_{GR} & \eta \in (\eta_0, \eta_{end}] \end{cases}$$

and compare it with s_h^{kin} .

Pirsa: 22010081 Page 37/61

Pöschl-Teller approximation

- We try to find a manageable approximation of s_h^{kin} around the bounce at η_B , until an instant η_0 when GR holds.
- Around the bounce, approximate s_h^{kin} by

$$s_{\text{PT}} = \frac{U_0}{\cosh^2[\alpha(\eta - \eta_B)]}, \qquad U_0 = \frac{8\pi\rho_c}{3}, \qquad \alpha = \frac{\operatorname{arcosh}(a_0^2)}{(\eta_0 - \eta_B)}$$

so that $s_{\text{PT}}(\eta_B) = s_h^{\text{kin}}(\eta_B)$ and $s_{\text{PT}}(\eta_0) = s_{\text{kin}}(\eta_0)$?

- Checking for different choices of $t_0 \gtrsim 0.4$:
 - \star Error grows before η_0 , negligible afterwards.
 - ★ Best situation for $t_0 \simeq 0.4$: Error of at most 15%.

Pirsa: 22010081 Page 38/61

Mukhanov-Sasaki equations

- Approximate pre-inflationary epoch (η_0, η_i) as a Friedmann universe with a massless scalar field.
- Approximate the inflationary period $[\eta_i, \eta_{end}]$ as de Sitter.
- For the interval $[\eta_B, \eta_0]$ with strong loop quantum effects, we approximate the mass with the Pöschl-Teller potential.
- Approximate Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}^{"} + \left(k^2 + \tilde{s}_h\right) v_{\overrightarrow{k}} = 0,$$

$$\tilde{s}_{h} = \begin{cases} s_{\text{PT}}, & \eta \in [\eta_{B}, \eta_{0}], \\ \tilde{s}_{\text{GR}} & \eta \in (\eta_{0}, \eta_{\text{end}}], \end{cases} \quad \tilde{s}_{\text{GR}} = \begin{cases} \frac{1}{4} \left(\eta - \eta_{0} + \frac{1}{2H_{0}a_{0}} \right)^{-2}, & \eta \in (\eta_{0}, \eta_{i}) \\ -2H_{\Lambda}^{2} \left[a_{i}^{-1} - H_{\Lambda}(\eta - \eta_{i}) \right]^{-2} & \eta \in [\eta_{i}, \eta_{\text{end}}] \end{cases}$$

Pirsa: 22010081 Page 39/61

Mukhanov-Sasaki equations

• Approximate Mukhanov-Sasaki equations:

$$v_{\overrightarrow{k}}'' + (k^2 + \tilde{s}_h) v_{\overrightarrow{k}} = 0,$$

$$\tilde{s}_h = \begin{cases} s_{\text{PT}}, & \eta \in [\eta_B, \eta_0], \\ \tilde{s}_{\text{GR}} & \eta \in (\eta_0, \eta_{\text{end}}], \end{cases} \quad \tilde{s}_{\text{GR}} = \begin{cases} \frac{1}{4} \left(\eta - \eta_0 + \frac{1}{2H_0 a_0} \right)^{-2}, & \eta \in (\eta_0, \eta_i) \\ -2H_{\Lambda}^2 \left[a_i^{-1} - H_{\Lambda} (\eta - \eta_i) \right]^{-2} & \eta \in [\eta_i, \eta_{\text{end}}] \end{cases}$$

- Can be solved analytically in each period.
- Solutions can be uniquely matched by continuity.
- We can set initial conditions in the earliest epoch and then know the complete evolution of the perturbations.

Pirsa: 22010081 Page 40/61

Pirsa: 22010081 Page 41/61

Power spectrum in de Sitter

• In de Sitter, solutions to Mukhanov-Sasaki equations:

$$\begin{split} \mu_k &= A_k \frac{e^{ik(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})}}{\sqrt{2k}} \left[1 + \frac{i}{k(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})} \right] \\ &+ B_k \frac{e^{-ik(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})}}{\sqrt{2k}} \left[1 - \frac{i}{k(\eta - \eta_i - a_i^{-1} H_\Lambda^{-1})} \right] \end{split}$$

• Primordial power spectrum is well-approximated by:

$$\mathscr{P}(k) = \frac{H_{\Lambda}^2}{4\pi^2} |B_k - A_k|^2, \qquad |B_k|^2 - |A_k|^2 = 1$$

• Dephasing between constants typically leads to oscillations.

Pirsa: 22010081 Page 42/61

Power spectrum in de Sitter

• In de Sitter, solutions to Mukhanov-Sasaki equations:

$$\mu_{k} = A_{k} \frac{e^{ik(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})}}{\sqrt{2k}} \left[1 + \frac{i}{k(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})} \right] + B_{k} \frac{e^{-ik(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})}}{\sqrt{2k}} \left[1 - \frac{i}{k(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})} \right]$$

• Primordial power spectrum:

$$\mathscr{P}(k) = \frac{H_{\Lambda}^2}{4\pi^2} |B_k - A_k|^2, \qquad |B_k|^2 - |A_k|^2 = 1$$

- Dephasing between constants: Oscillations.
 - → If no interference in previous epoch(s), origin can be traced to instantaneous changes of the mass function.

Pirsa: 22010081 Page 43/61

Power spectrum in de Sitter

• In de Sitter, solutions to Mukhanov-Sasaki equations:

$$\mu_{k} = A_{k} \frac{e^{ik(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})}}{\sqrt{2k}} \left[1 + \frac{i}{k(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})} \right] + B_{k} \frac{e^{-ik(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})}}{\sqrt{2k}} \left[1 - \frac{i}{k(\eta - \eta_{i} - a_{i}^{-1}H_{\Lambda}^{-1})} \right]$$

• Primordial power spectrum:

$$\mathscr{P}(k) = \frac{H_{\Lambda}^2}{4\pi^2} |B_k - A_k|^2, \qquad |B_k|^2 - |A_k|^2 = 1$$

- Dephasing between constants: Oscillations.
- For well-behaved initial state, we remove it in the end.

- Vacuum state: Initial conditions for the perturbations.
- In de Sitter, natural choice is Bunch-Davies: $A_k = 0$, $B_k = 1$.
- What if there are observable scales *k* that are sensitive to the spacetime curvature in the pre-inflationary epoch?

Choice of vacuum becomes an open question

Pirsa: 22010081 Page 45/61

- Vacuum state: Initial conditions for the perturbations.
- In de Sitter, natural choice is Bunch-Davies: $A_k = 0$, $B_k = 1$.
- What if there are observable scales *k* that are sensitive to the spacetime curvature in the pre-inflationary epoch?
- For a robust comparative study: Criterion of choice should be applicable to different types of cosmological dynamics.
- Ideally, it should also be motivated by fundamental considerations, and lead to positive-frequency solutions that do not present rapid oscillations in time and/or *k*.

Pirsa: 22010081 Page 46/61

- Beatriz Elizaga Nava...
- Vacuum state: Initial conditions for the perturbations.
- Here, criterion is fixed based on previous investigations:
 - ★ Originates from an ultraviolet diagonalization of the Hamiltonian in quantum cosmology.
 - ★ In the ultraviolet regime, it is the unique one that does not display rapid time oscillations of frequency k.
 - ★ Applied to Minkowski and de Sitter spacetimes, leads to Poincaré and Bunch-Davies vacua.

e.g. [BEN, G.A. Mena Marugán, and T. Thiemann, Class. Quant. Grav. 36 (2019) 185010]; [BEN, G.A. Mena Marugán, and S. Prado, Class. Quant. Grav. 38 (2021) 035001]

Pirsa: 22010081 Page 47/61

- Vacuum state: Initial conditions for the perturbations.
- Here, criterion is fixed based on previous investigations:

$$\mu_{k} = \sqrt{-\frac{1}{2\operatorname{Im}(h_{k})}} e^{i\int_{\eta_{0}}^{\eta} \operatorname{Im}(h_{k})}, \qquad kh_{k}^{-1} \sim i \left[1 - \frac{1}{2k^{2}} \sum_{n=0}^{\infty} \left(\frac{-i}{2k}\right)^{n} \gamma_{n}\right],$$

$$\gamma_{0} = s, \quad \gamma_{n+1} = -\gamma'_{n} + 4s \left[\gamma_{n-1} + \sum_{m=0}^{n-3} \gamma_{m} \gamma_{n-(m+3)}\right] - \sum_{m=0}^{n-1} \gamma_{m} \gamma_{n-(m+1)}$$

- The smooth mass *s* can be evaluated on GR or effLQC.
- Formula not applicable with our approximations (due to discontinuities), but can be used to fix initial conditions in the earliest smooth epoch (KD or bouncing regime).

Pirsa: 22010081 Page 48/61

• In the case of GR with KD, recall that the general solution to the MS equation in the epoch (η_0, η_i) is:

$$\mu_k = C_k \sqrt{\frac{\pi y}{4}} H_0^{(1)}(ky) + D_k \sqrt{\frac{\pi y}{4}} H_0^{(2)}(ky), \qquad y = \eta - \eta_0 + \frac{1}{2H_0 a_0}$$

Pirsa: 22010081 Page 49/61

• In the case of GR with KD, our criterion fixes the following positive-frequency solutions in the epoch (η_0, η_i) :

$$\mu_k = \sqrt{\frac{\pi y}{4}} H_0^{(2)}(ky), \qquad y = \eta - \eta_0 + \frac{1}{2H_0 a_0}$$

• By continuity, fixes positive-frequency solutions in de Sitter:

$$A_k = \frac{e^{ik/(a_i H_{\Lambda})}}{4} \sqrt{\frac{k\pi}{a_i H_{\Lambda}}} \left[H_0^{(2)} \left(\frac{k}{2a_i H_{\Lambda}} \right) - \left(\frac{a_i H_{\Lambda}}{k} - i \right) H_1^{(2)} \left(\frac{k}{2a_i H_{\Lambda}} \right) \right],$$

$$B_k = \frac{e^{-ik/(a_i H_\Lambda)}}{4} \sqrt{\frac{k\pi}{a_i H_\Lambda}} \left[H_0^{(2)} \left(\frac{k}{2a_i H_\Lambda} \right) - \left(\frac{a_i H_\Lambda}{k} + i \right) H_1^{(2)} \left(\frac{k}{2a_i H_\Lambda} \right) \right]$$

Pirsa: 22010081 Page 50/61

• In the case of GR with KD, our criterion fixes the following positive-frequency solutions in the epoch (η_0, η_i) :

$$\mu_k = \sqrt{\frac{\pi y}{4}} H_0^{(2)}(ky), \qquad y = \eta - \eta_0 + \frac{1}{2H_0 a_0}$$

- By continuity, fixes positive-frequency solutions in de Sitter.
- Resulting power spectrum displays artificial oscillations around $k_I = a_i H_{\Lambda}$, which we remove with the transformation:

$$A_k \to A_k^{\text{kin}} = |A_k|, \qquad B_k \to B_k^{\text{kin}} = |B_k|$$

Pirsa: 22010081 Page 51/61

• Resulting power spectrum displays artificial oscillations around $k_I = a_i H_{\Lambda}$, which we remove with the transformation:

$$A_k \to A_k^{\text{kin}} = |A_k|, \qquad B_k \to B_k^{\text{kin}} = |B_k|$$

Dashed line in: [C.R. Contaldi, M. Peloso, L. Kofman, and A.D. Linde, JCAP 0307 (2003) 002]

• Around the bounce in LQC, the general solution of the MS equations with a Pöschl–Teller potential is:

$$\mu_k = M_k [x(1-x)]^{-i\tilde{k}/2} {}_2F_1 \left(b_1^k, b_2^k; b_3^k; x \right)$$

$$+ N_k x^{i\tilde{k}/2} (1-x)^{-i\tilde{k}/2} {}_2F_1 \left(b_1^k - b_3^k + 1, b_2^k - b_3^k + 1; 2 - b_3^k; x \right),$$
 where $x = \left[1 + e^{-2\alpha(\eta - \eta_B)} \right]^{-1}, \ \tilde{k} = k/\alpha, \ \text{and:}$

$$b_1^k = \frac{1}{2} \left(1 + \sqrt{1 + \frac{32\pi\rho_c}{3\alpha^2}} \right) - i\tilde{k}, \quad b_2^k = \frac{1}{2} \left(1 - \sqrt{1 + \frac{32\pi\rho_c}{3\alpha^2}} \right) - i\tilde{k},$$

$$b_3^k = 1 - i\tilde{k}$$

Pirsa: 22010081 Page 53/61

• In the case of LQC, our criterion fixes the following positive-frequency solutions in the epoch $[\eta_B, \eta_0]$ (up to const. phase):

$$\mu_k = \frac{1}{\sqrt{2k}} [x(1-x)]^{-i\tilde{k}/2} {}_2F_1\left(b_1^k, b_2^k; b_3^k; x\right), \qquad \tilde{k} = k/\alpha$$

• By continuity, fixes positive-frequency solutions in the KD classical epoch:

$$C_k = \left[H_0^{(1)} \left(\frac{k}{2H_0 a_0} \right) \right]^{-1} \left[\sqrt{\frac{8H_0 a_0}{\pi}} \mu_k(\eta_0) - D_k H_0^{(2)} \left(\frac{k}{2H_0 a_0} \right) \right],$$

Pirsa: 22010081 Page 54/61

$$\mu_k = \frac{1}{\sqrt{2k}} [x(1-x)]^{-i\tilde{k}/2} {}_2F_1\left(b_1^k, b_2^k; b_3^k; x\right), \qquad \tilde{k} = k/\alpha$$

• By continuity, fixes positive-frequency solutions in the KD classical epoch:

$$D_k = i \sqrt{\frac{\pi}{8H_0a_0}} \bigg[k H_1^{(1)} \left(\frac{k}{2H_0a_0} \right) \mu_k(\eta_0) - H_0^{(1)} \left(\frac{k}{2H_0a_0} \right) H_0a_0\mu_k(\eta_0) \\$$

$$+H_0^{(1)} \left(\frac{k}{2H_0a_0}\right) \mu_k'(\eta_0)$$

Pirsa: 22010081 Page 55/61

• In the case of LQC, our criterion fixes the following positive-frequency solutions in the epoch $[\eta_B, \eta_0]$ (up to const. phase):

$$\mu_k = \frac{1}{\sqrt{2k}} [x(1-x)]^{-i\tilde{k}/2} {}_2F_1\left(b_1^k, b_2^k; b_3^k; x\right), \qquad \tilde{k} = k/\alpha$$

- By continuity, fixes positive-frequency solutions in the KD classical epoch and these, in turn, in the de Sitter regime.
- Resulting power spectrum displays artificial oscillations for $k \lesssim k_{LQC} = \alpha$ (~ 3), which we remove in analogous way:

$$A_k \to A_k^{\mathrm{LQC}} = |A_k|, \qquad B_k \to B_k^{\mathrm{LQC}} = |B_k|$$

Pirsa: 22010081 Page 56/61

• Resulting power spectrum displays artificial oscillations for $k \lesssim k_{LQC} = \alpha$ (~ 3), which we remove:

$$A_k \to A_k^{\mathrm{LQC}} = |A_k|, \qquad B_k \to B_k^{\mathrm{LQC}} = |B_k|$$

Pirsa: 22010081 Page 57/61

- Resulting power spectrum displays artificial oscillations for $k \lesssim k_{LQC} = \alpha$ (~ 3), which we remove.
- We compare it with the one in the GR with KD model for which inflation starts at the same scale as in LQC: $k_I \sim 10^{-3}$.

---- GR --- LQC

Pirsa: 22010081 Page 58/61

Conclusions

- Approximative methods to understand **analytically** the main differences between (classical) KD preinflationary and LQC effects leading to suppression in power spectra.
- Differences traceable to existence of two distinct scales:
 - **★** Curvature at onset of inflation (both models).
 - **★** Curvature around the bounce (only in LQC).
- They always differ in 3 orders of magnitude for interesting LQC solutions (phenomenologically speaking).
- Study can be used to compare other preinflationary models.
- Approximations yet rough: Call for further developing the studies about the dynamical behavior of the chosen vacua.

Pirsa: 22010081

Some ideas for the future

• New LQC-inspired models of spherically symmetric black holes have been investigated over the last few years.

e.g. [Ashtekar, J. Olmedo, and P. Singh, Phys. Rev. D 98, 126003 (2018); N. Bodendorfer, F.M. Mele, and J. Munch, Class. Quant. Grav. 36, 19015 (2019); A. García-Quismondo and G.A. Mena Marugán, Front. Astron. Space Sci. 8, 701723 (2021)]

Pirsa: 22010081 Page 60/61

Some ideas for the future

- Beatriz Elizaga Nava...
- New LQC-inspired models of spherically symmetric black holes have been investigated over the last few years.
- With a quantum description of the black hole geometry, a hybrid quantization of perturbations around it seems plausible.
- The effective wave equations would contain modifications coming from the quantum corrections of the background:
 - ★ Black hole horizon?
 - **★** Properties in the asymptotic region?
- The physical choice of initial conditions for the GW and the appropriate definition of their quasinormal modes could vary.
- We should count on the intuition and expertise gained in the context of cosmology about similar issues (e.g. choice of vacuum).

Pirsa: 22010081 Page 61/61