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Motivation

Standard cosmological model with inflation 1s extremely
successful describing primordial inhomogeneities.

Is it completely satistactory, considering the primeval
stages of the Universe with very high curvature?

Theoretically:
* Big-Bang singularity: loss of predictability.
* (Quantum gravity phenomena?

* Non-inflationary epoch: State for the perturbations?

Beatriz Elizaga Nava...
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Motivation

Standard cosmological model with inflation 1s extremely
successful describing primordial inhomogeneities.

Is it completely satistactory, considering the primeval
stages of the Universe with very high curvature?

Observationally:
* Angular power spectrum in GCMB: Anomalies
* Power suppression £ < 30, lensing amplitude > 1, ...

* Strongly affected by cosmic variance, but could point
to new physics — Planck regime of the Universe?

Beatriz Elizaga Nava...
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Motivation

Standard cosmological model with inflation 1s extremely
successful describing primordial inhomogeneities.

Is it completely satisfactory, considering the primeval
stages of the Universe with very high curvature?

Theoretical and observational concerns.
Promising candidate: Loop Quantum Cosmology (LQC).
Typically includes a classical pre-inflationary epoch.

Robust predictions require disentangling LOQC from GR
effects on the evolution ot the perturbations.

Beatriz Elizaga Nava...
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Loop Quantum Cosmology:
Mukhanov-Sasaki equations
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What is LQC?

* (Canonical quantization program for spacetimes with high
degree of symmetry: e.g. cosmological spacetimes.

* Techniques from the non-perturbative theory of LQG.

* Ine.g FLRW-type cosmologies with massless scalar field,
well-defined Hilbert space with nice physical properties:

* Energy density operator bounded from above.
* States of zero-volume are dynamically decoupled.

* Spectral analysis: Strong evidence for the quantum
resolution of the cosmological singularity.

e.g. [A. Ashtekar et al., Phys. Rev. Lett. 96 (2006) 141301;
M. Martin-Benito et al., Phys. Rev. D 80 (2009) 104015]
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What is LQC?

Canonical quantization program for spacetimes with high
degree of symmetry: e.g. cosmological spacetimes.

Techniques from the non-perturbative theory of LQG.

In e.g. FLRW-type cosmologies with massless scalar field,
well-defined Hilbert space with nice physical properties.

Provides mechanisms to resolve Big-Bang singularity

== Big Bounce.

Can be combined with standard quantum field theory
techniques to include inhomogeneities.
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Eftective LQGC
FLRW-type spacetime with massless scalar field ¢.

Family of physical states with Gaussian behavior, peaked
in the geometry for all values of ¢.

Trajectories of peaks are relativistic for low energies,

departures close to Planck density === hounce.

Modified Friedmann equations, p,. =~ 0.41 (Planck units):

(ar)z 871' . ( p) 1 ¢r)2
- ==—ap | = ’ 2= I B
a 8

¢u_|_ 2%@5’:0
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Perturbations in LQC

Beatriz Elizaga Nava...

Hybrid quantization of perturbed cosmology with inflaton:

* Background cosmology: LQC techniques.

* (Gauge-invariant perturbations: Fock representation.

Canonical formulation === Zcro-mode of the Hamiltonian
constraint: FLRW + Mukhanov-Sasaki Hamiltonians.

Physical states should only depend on the background
cosmology and the gauge-invariant perturbations.

Physical states should be annihilated by the Hamiltonian
constraint operator, couples background and perturbations.

e.g. [L. Castell6 Gomar et al., JCAP 06 (2015) 045]
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Mukhanov-Sasaki equations

Physical states should be annihilated by the constraint.
Focus on states with small backreaction on background.

Mean-field approximation on constraint equation

=P [.ffective constraint for the perturbations, depends
on background geometry via expectation values.

Eftective Mukhanov-Sasaki equations:

V%» + [k2 - Seff]v? — 0, Seff — eﬂ‘(’?)

Mass codifies LQG eftects on the background.

e.g. [L.. Castell6 Gomar et al., JCAP 06 (2015) 045]
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Mukhanov-Sasaki equations
» Effective Mukhanov-Sasaki equations:

v+ [k* + sglv =0

* Restrict to background states with effective LQC behavior:

'\ 2 )
) -5(-2) 3
a 0 DRV

¢ +2=p +a*V,=0
a

* Tor these states, the mass can be evaluated on the peaks:

4nG
G ’; a(p—3P)+ U
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Cosmological solutions
Effecive Mukhanov-Sasaki equations:
v% + [k% + Seelvz =0

Restrict to background states with effective LQC behavior.

Phenomenologically interesting solutions: Large observable
scales a/k today were ~ order of curvature at the bounce.

They are all such that pi™ > V(¢p),

1 (s’
pe=pg"+Vigp), pyt== (—B)

2 \ ag

e.g. [I. Agullo and N.A. Morris, Phys. Rev. D 92 (2015) 124040]
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Cosmological solutions

Eftective Mukhanov-Sasaki equations:

v% -+ [k2 -+ scff]v;> =0

Restrict to background states with effective LQC behavior.

Phenomenologically interesting solutions: Large observable
scales a/k today were ~ order of curvature at the bounce.

They are all such that pi™ > V(¢p).

They imply a short-lived inflation ( 2 65 e-folds), and a
classical deccelerated preinflationary expansion.
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Cosmological solutions

Beatriz Elizaga Nava...

» Effective Mukhanov-Sasaki equations:

v+ [k* + soglv =0

* Focus on phenomenologically interesting eftective LQC
solutions, e.g. for V(¢p) = m*¢?/2, m =12 x107%, ¢z = 0.97:

Fig. from [BEN et al., Universe 4 (2018) 98]
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Classical inflation with KD regime
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Perturbations in KD period

* Deep in the pre-inflationary epoch, the potential is
completely negligible compared with kinetic energy.

» Approximate this classical epoch (7, #;) as a Friedmann
universe with a massless scalar field:

6
a(n) = an/ T 2a0H =10, pm) = py [&]

a(n)
where H = +/8ap/3, Hy = H(i?o), ag = a(?lyo) :

1

* T'ime where quantum geometry effects are
negligible, for the effective LQC solutions.

* Alternatively, in a pure GR model 7, can be
arbitrarily close to the singularity¥.
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Perturbations in KD period

* Deep in the pre-inflationary epoch, the potential is
completely negligible compared with kinetic energy.

» Approximate this classical epoch (7, #;) as a Friedmann
universe with a massless scalar field:

dp 0
a(n) = ap/1 + 2apHy(n —ny),  pn) = py [?’7)]

where H = +/8xzp/3, Hy = H(ny), ag = a(y) .

* Mukhanov-Sasaki equations:

7 2 1
V?-l-(k +Skjn)V?=0, Skl-n=Z n—mny+

Pirsa: 22010081 Page 18/61




Perturbations in KD period

* Mukhanov-Sasaki equations:

1 2 1
VE'-I_(k +Skin)V?=O= Skjn=Z n—mnot

* General (1sotropic) solutions:

y Ty |
=C1/—H(1)k + Dy [—HP(ky), —n—n,+
Mk k 1 o (ky) M/ 2 7o (ky) Yy=n—no A

* They provide normalized positive-frequency solutions if:

/ ! . s %4
pp — s =i = D" |G| =1
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Perturbations in de Sitter “ob

" Beatriz Elizaga Nava...

* The evolution of the Universe during slow-roll inflation 1s
of quasi-de Sitter type.

* For our purposes here, we ignore transition effects and
deviations from an exact de Sitter phase.
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Perturbations 1n de Sitter

" Beatriz Elizaga Nava...

The evolution of the Universe during slow-roll inflation is
of quasi-de Sitter type.

Approximate the inflationary period [r;,7,,4] as de Sitter:

=]
a(n) = [ai_l — H\(n — ’7;:)] ’ a; = a()\/ 1+ 2a,Hy(n; — 1)

where H, = 1/87zpy/3 (aO/ai)s.

Mukhanov-Sasaki equations:

v% A (k2 s Sds) e tll) == [ai_l — H,\(n — ’7;')] -,
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Perturbations in de Sitter

* Mukhanov-Sasaki equations:

v% + (k2 + SdS) vy =0, S4g = — 2H/2\ [ai_l — H,(n — ql-)] _2.

* General (1sotropic) solutions:

e ) 1 ;
w,=A =7
Kk A2k k(n —n; — a7 tHRY)

k(n —n; — a7 'HY')

o —ik—n—a7 HiY) ;
+B, 1 -

2k

* They provide normalized positive-frequency solutions if:

|B,|” — | A > =1
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Inflation with KD epoch in GR

Approximate pre-inflationary epoch (7,, ;) as a Friedmann
universe with a massless scalar field.

Approximate the inflationary period [#;, 77.,4] as de Sitter.
Instantaneous transition between both periods.

Approximate Mukhanov-Sasaki equations:

L A2
+m) ) n € (o, ;) /

a;_ —a bl ’7;')] n e [n, ’Tend]
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Inflation with KD epoch in GR

* Approximate Mukhanov-Sasaki equations:

V% = (k2 + §GR) VI’ = 0,

r

=
1 1
Z(’?_W0+m) ; n € (1, ;)

_ -2
| —2H} [a7" = Hptr = ) N € [ Nenal

* Solutions in each epoch can be matched by continuity.

 Fixing initial conditions in the KD regime fixes the state of
the perturbations during de Sitter inflation (and conversely):

Ar = ALG, D), B, = B(Ci, D)
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LQGC with short-lived inflation
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Pre-inflationary epoch with KD

* Phenomenologically interesting solutions in eftective LQGC: 1
Kinetic domination around the bounce: V(¢) ~ 0.

* Background equations are analytically solvable:
)1/6

qﬁ(l‘) == 2pca_3(t), alin= (1 -+ 247rpct2

|
n—ng =,k ( et —24ﬂﬂcf2>f

b

622
* Then, Mukhanov-Sasaki equations with V(¢) =0 :

) S Al

v+ (k2 + 57 v =0, A= —87;’0 (1 + 24zp.1*

We do not know their analytic solutions (yet...).
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Inflation with KD epoch in GR

Approximate pre-inflationary epoch (77, ;) as a Iriedmann “
universe with a massless scalar field.

Approximate the inflationary period [#;, 7.,4] as de Sitter.
Instantaneous transition between both periods.

Approximate Mukhanov-Sasaki equations:

Vi» == (k2 o gGR) VI’ — O, . . .
k Discontinuity!
L \"2
oF e ) ) n € (1, n;) /
2

n = [771'9 ”end]
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Cosmological solutions

Eftective Mukhanov-Sasaki equations:

v% ([t seff]v? =10}

Restrict to background states with effective LQC behavior.

Phenomenologically interesting solutions: Large observable
scales a/k today were ~ order of curvature at tl¥e bounce.

They are all such that pi™ > V(¢p).

They imply a short-lived inflation ( 2 65 e-folds), and a
classical deccelerated preinflationary expansion.
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Cosmological solutions

Effecive Mukhanov-Sasaki equations:
Vs [k* + Seelvz =0
Restrict to background states with effective LOC behavior.

Phenomenologically interesting solutions: Large observable
scales a/k today were ~ order of curvature at the bounce.

They are all such that pi™ > V(¢p),

1 (s \°
Pc = Pgm +V(¢B)a Pgm — (_B)

2 \ ag

e.g [I. Agullo and N.A. Morris, Phys. Rev. D 92 (2015) 124040]
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LQGC with short-lived inflation
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Pre-inflationary epoch with KD

Beatriz Elizaga Nava...

* Phenomenologically interesting solutions in effective LQC:

Kinetic domination around the bounce: V(¢) ~ 0. .

* Background equations are analytically solvable:
)1/6

Cj)(l‘) == 210061_3(1‘), alt) = (1 + 247rpct2

113
n—Ng = F; ( -~ = 24ﬂpct2) t

?

R
* Then, Mukhanov-Sasaki equations with V(¢) =0 :

V% -+ (k2 + S}fin) v = 0, kin _ % (1 + 247@06.1‘2)—2/3

We do not know their analytic solutions (yet...).
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Pre-inflationary epoch with KD

* Ignoring transition eftects, we can approximate V(¢) ~ 0
until the onset of inflation at #;.

* On the other hand, the strong LLQGC effects are relevant
only in a very narrow interval around the bounce.

« We try to find a manageable approximation of 5™ around
the bounce at 775, until an instant 7, when GR holds.

Pirsa: 22010081
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Pre-inflationary epoch with KD

Ignoring transition effects, we can approximate V(¢) ~ 0
until the onset of inflation at #;.

We try to find a manageable approximation of s5™ around
the bounce at #p, until an instant 7, when GR holds.

Then, we can approximate the period (7, #;) by a classical
universe with a massless scalar field, with mitial data:

)1/6

ap = ( 1+ 24np,12) Po = Pcdy 2

Studying the relative difference between s and sy;, we

find that for #, 2 0.4 the error is no bigger than a3 % .

Beatriz

-
y

El

izaga Nava...
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Pre-inflationary epoch with KD

Beatriz Elizaga Nava...

* Phenomenologically interesting solutions in effective LQC:
Kinetic domination around the bounce: V(¢) ~ 0.

* Background equations are analytically solvable:
)1/6

fﬁ(f) — = 2pca"3(t), atiy= (1 -+ 247rpct2

e
n—ng =,k ( o 24ﬂﬂcf2) t

?

622
* Then, Mukhanov-Sasaki equations with V(¢) =0 :

) —AE

V% == (k2 + S}fin) Ve = 0, kin _ —87::}00 (1 SF 247Tpcf2

We do not know their analytic solutions (yet...).
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Pre-inflationary epoch with KD

Ignoring transition effects, we can approximate V(¢) ~ 0
until the onset of inflation at #;.

We try to find a manageable approximation of s;™ around
the bounce at 7, until an instant 7, when GR holds.

Then, we can approximate the period (7, #;) by a classical
universe with a massless scalar field, with initial data:

)1/6

ay = (1 +24np,12) Po = Py S

Studying the relative difference between s and sy;, we

find that for #, 2 0.4 the error is no bigger than a3 %.
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Poschl-"Teller approximation

Beatriz Elizaga Nava...

« We try to find a manageable approximation of s around

the bounce at 77, until an instant 7, when GR holds.

e Around the bounce, approximate s, by

U, 87p, arcosh(a?)
SPT - > 9 UO = ) a =
cosh[a(n,— 1p)] 3 (Mo — 11B)

so that spr(175) = 55™(75) and spr(p) = Siin(0)?

Pirsa: 22010081 Page 36/61




Poschl-"Teller approximation

4 Beatriz Elizaga Nava...
kin

* We try to find a manageable approximation of s, around
the bounce at 77, until an instant 7, when GR holds.

e Around the bounce, approximate s, by

U, _ 8ap, _ arcosh(ag)

S — ’ U — ’ a =
¥t cosh?[a(n — np)] 0 3 (Mo — 11B)

so that spr(175) = 55™(75) and spr(p) = Siin(0)?

* To check its goodness, we define the approximate mass:

y Uycosh2[a(n —np)l, 71 € [ng, nol,
Sh =3\ .
SGR 1N € (Mys Nenal

and compare it with 5"
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Poschl-"Teller approximation

4 Beatriz Elizaga Nava...
kin

* We try to find a manageable approximation of s, around
the bounce at 77, until an instant 7, when GR holds.

e Around the bounce, approximate s, by

) U, U 87p, arcosh(ay)
— ’ =S ’ a =
¥t cosh?[a(n — np)] 0 3 (Mo — 11B)

so that spr(175) = 55™(75) and spr(p) = Siin(0)?
* (Checking for different choices of 7, = 0.4 :
* Error grows before 7,, negligible afterwards.

* Best situation for £y, ~ 0.4 : Error of at most 15%.
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Mukhanov-Sasaki equations

Beatriz Elizaga Nava...

Approximate pre-inflationary epoch (7, #;) as a Friedmann
universe with a massless scalar field.

Approximate the inflationary period [#;, 7.,4] as de Sitter.

For the interval [#g, n1y] with strong loop quantum effects,
we approximate the mass with the Poschl—Teller potential.

Approximate Mukhanov-Sasaki equations:

Ve (kK* +3,) v =0,

)
1 1
spr. 1 € gl o ('1 — 1y + m) , 1 € (o, 1)

Sy = SGR =

3" E ) 2 I -
Gr 1 € (Mg, Mepdl —2H? [ai '—H.(n- 11,-)] € (M Hepal
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Mukhanov-Sasaki equations

BeatrizElizaga Nava...

» Approximate Mukhanov-Sasaki equations:

v+ (k2+ S"'h) v =0,

=
1 1
. spr> 1 € (1. Mol —('?—’? +—) , N € ny.n)
Shz{PT - o= 0 2Ho o

S“ E ” o) - 2 =
GR M (770 Hendl _2H/2\ [ai L H\(n - 771')] H € [1; Hepal

» (Can be solved analytically in each period.
* Solutions can be uniquely matched by continuity.

* We can set initial conditions in the earliest epoch and then
know the complete evolution of the perturbations.
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Beatriz Elizaga Nava...

acuum state and power spec
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Power spectrum 1n de Sitter

* In de Sitter, solutions to Mukhanov-Sasaki equations:

okn—n—a'H") | j |
+
2k k(n —n; — a7 'Hy')

i = Ay

+B,

Yo p—ik(r-n—a; 'Hy) [ i

k(n —n; — a7 1HRY) l

NGT:

* Primordial power spectrum is well-approximated by:
2

H
Pk)=—|B,— A, B> — A =1
472

* Dephasing between constants typically leads to oscillations.
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Power spectrum 1n de Sitter

* In de Sitter, solutions to Mukhanov-Sasaki equations:

okn—n—a;'H") | i i
+
2k oS as Hyl)

M = Ay

+B,

o—ik(n—n—a;"Hy") [ :

k(n —n; — a7 1HY) ]

NGT:

* Primordial power spectrum:
_ Hi ) A
Pk) =——|Br— A", |B]"— |Al =1
A2

* Dephasing between constants: Oscillations.

== [{ no interference in previous epoch(s), origin can be
traced to instantaneous changes of the mass function.
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Power spectrum 1n de Sitter

In de Sitter, solutions to Mukhanov-Sasaki equations:

¢ *—n—a; ' H) | i |
+
\ 2k k(n —n; — a7 'HyY)

M = Ay

+B,

o—ik(n—n—a;"Hy") [ :

V2k kO —m— a7 'Hy) |
Primordial power spectrum:
2

H
Ph) =B — AL, B = A =1
A2

Dephasing between constants: Oscillations.

For well-behaved 1nitial state, we ren.ove it in the end.
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Choice of vacuum state

Beatriz Elizaga Nava...

* Vacuum state: Initial conditions for the perturbations.

* In de Sitter, natural choice is Bunch-Davwvies: A, =0, B, = 1.

» What if there are observable scales k that are sensitive to
the spacetime curvature in the pre-inflationary epoch?

Choice of vacuum becomes an open question
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Choice of vacuum state

Vacuum state: Initial conditions for the perturbations.
In de Sitter, natural choice 1s Bunch-Davies: A, =0, B, = 1.

What if there are observable scales k that are sensitive to
the spacetime curvature in the pre-inflationary epoch?

For a robust comparative study: Criterion of choice should
be applicable to different types of cosmological dynamics.

Ideally, it should also be motivated by fundamental
considerations, and lead to positive-frequency solutions that
do not present rapid oscillations in time and/or k.
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Choice of vacuum state

Beatriz Elizaga Nava...

* Vacuum state: Initial conditions for the perturbations.
* Here, criterion 1s fixed based on previous investigations:

* Originates from an ultraviolet diagonalization of the
Hamiltonian in quantum cosmology.

* In the ultraviolet regime, it is the unique one that does
not display rapid time oscillations of frequency «.

* Applied to Minkowski and de Sitter spacetimes, leads
to Poincaré and Bunch-Davies vacua.

e.g. [BEN, G.A. Mena Marugan, and T. Thiemann, Class. Quant. Grav. 36 (2019) 185010];
[BEN, G.A. Mena Marugan, and S. Prado, Class. Quant. Grav. 38 (2021) 035001]
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Choice of vacuum state

Beatriz Elizaga Nava...

* Vacuum state: Initial conditions for the perturbations.

* Here, criterion 1s fixed based on previous investigations:

1 i Im(hy) . 1 & /-i\"
=4 ———————e : kh, " ~i|l—-— — ) 7.l
ATV T 2ma : 2 &\ %) "

n—3 n—1
=5 VYor1 = — y;z + 4s IYnl & Z meR(m+3)] — Z Ymln—(m+1)
m=0

m=0
* The smooth mass s can be evaluated on GR or eftLQC.

* Formula not applicable with our approximations (due to
discontinuities), but can be used to fix initial conditions in
the earliest smooth epoch (KD or bouncing regime).
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Power spectrum in GR

. Beatriz Elizaga Nava...

* In the case of GR with KD, recall that the general solution
to the MS equation in the epoch (7, ;) 1s:

Ty Ty 1
= Cp [—=HW(ky) + D, [ ——HP(ky), — 1 — 1.+
e = Gy | 4 0 (ky) K/ 4 0 (ky) y=n—"o 2Hodg
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Power spectrum in GR -

, DBeatrizElizaga Nava...

* In the case of GR with KD, our criterion fixes the following
positive-frequency solutions in the epoch (7, #;):

Ty |
=, [—H®(ky), =7 -1+
i 7 (ky) WS =i 2Hoae

* By continuity, fixes positive-frequency solutions in de Sitter:

e ekl (a;Hy) kx HO) k _ a;H)y -
k— 0
4 a,;H A ZaiH A k

e_ik/(aiHA) kﬂ k
H®
4 aiH A 0 2CIIH A
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Power spectrum in GR

, DBeatrizElizagaNava...

* In the case of GR with KD, our criterion fixes the following
positive-frequency solutions in the epoch (7, #;):

Ty |
=, [—HP(ky), =7 -1+
i 7 (ky) y=1n—1g 2Hoae

* By continuity, fixes positive-frequency solutions in de Sitter.

* Resulting power spectrum displays artificial oscillations
around k; = a;H,, which we remove with the transformation:

Ak_)'A]Ein=|Ak|a Bk—)’B;lfjn=|Bk|
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Power spectrum in GR

Beatriz Elizaga Nava...

* Resulting power spectrum displays artificial oscillations
around k; = a;H,, which we remove with the transformation:

Ak—ﬁ'A;Ein=|Ak|a Bk—?’B}fin=|Bk|

— 41'[2'Pk|n(k)fH]\2

Dashed line in: [C.R. Contaldi, M. Peloso, L.. Kofman, and A.D. Linde, JCAP 0307 (2003) 002]
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Power spectrum in (hybrid) LQC

* Around the bounce in LQGC, the general solution of the M»>
equations with a Poschl-Teller potential 1s:

e = Mx(1 — 01752, F, (bX, b%; b; x)
SRGer A — AR ([ = O e L — O (% =

where x = [1 -+ e_z"('?_”B)] _1, k = k/a, and:

1 32 ) 1 32 )
b= |1 +4)14+ e | ik ph==|1—1/1+22< | _ ik,
L 3 L0

a? 3a?

b =1—ik
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Power spectrum 1n (hybrid) LOQC

* In the case of LQC, our criterion fixes the following posmve-
frequency solutions in the epoch [#g, 7y] (up to const. phase):

ue = —[x(1 — )17 %2%,F, (bk, b5 bk %),  k=kla

1
v/ 2k
* By continuity, fixes positive-frequency solutions in the KD

classical epoch: --

-1
/ 8Hyay, _ @) k ]
)] [ 7 (o) — Dy Hy ( 2Hya, ) 2
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Power spectrum in (hybrid) LQC

* In the case of LQC, our criterion fixes the following positive-
frequency solutions in the epoch [#g, 7y] (up to const. phase):

ue = —[x(1 = )17 %2%,F, (bk, b bk %),  k=kla

|
v/ 2k
* By continuity, fixes positive-frequency solutions in the KD
classical epoch:

T k k
D, =i, | kH" — H" H,
. SHoaO [ : ( ZH()G%,) ﬂk(’?()) ! 2H0a0 OaOﬂk(’?O)
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Power spectrum in (hybrid) LQC

* In the case of LQC, our criterion fixes the following positive-
frequency solutions in the epoch [#g, 7y] (up to const. phase):

[x(1 — )1 %2, F, (b, b5 bk %),  k=kla

|
Mk =
v 2k
* By continuity, fixes positive-frequency solutions in the KD
classical epoch and these, in turn, in the de Sitter regime.

* Resulting power spectrum displays artificial oscillations for
k < kLoc = a( ~ 3), which we remove 1n analogous way:

A= A=A,  B,— B =|B|
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Power spectrum in (hybrid) LOQC

* Resulting power spectrum displays artificial oscillations for
k S koc = a( ~ 3), which we remove:

A, > A =|4,], B,—> B =|B]

0.001 0010 0.100

Pirsa: 22010081 Page 57/61




,_.

Power spectrum in (hybrid) LOQC

* Resulting power spectrum displays artificial oscillations for
k S kpoc = a( ~ 3), which we remove.

* We compare it with the one in the GR with KD model for
which inflation starts at the same scale as in LQC: k; ~ 1072,

Pirsa: 22010081 Page 58/61



Pirsa: 22010081

Conclusions

Approximative methods to understand analytically the
main differences between (classical) KD preinflationary and
LQC effects leading to suppression in power spectra.

Differences traceable to existence of two distinct scales:
* Curvature at onset of inflation (both models).

* Curvature around the bounce (only in LQC).

They always differ in 3 orders of magnitude for interesting
LQC solutions (phenomenologically speaking).

Study can be used to compare other preinflationary models.

Approximations yet rough: Call for further developing the
studies about the dynamical behavior of the chosen vacua.

Beatriz Elizaga Nava...
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Some 1deas for the future

BeatrizElizaga Nava...

¢ New LQC-inspired models of spherically symmetric black
holes have been investigated over the last few years.

e.g [Ashtekar, J. Olmedo, and P. Singh, Phys. Rev. D 98, 126003 (2018);
N. Bodendorfer, FM. Mele, and J. Munch, Class. Quant. Grav. 36, 19015 (2019);
A. Garcia-Quismondo and G.A. Mena Marugan, Front. Astron. Space Sci. 8, 701723 (2021)]
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Some 1deas for the future

New LQC-inspired models of spherically symmetric black holes Beamz!aga Nava..
have been investigated over the last few years.

With a quantum description of the black hole geometry, a hybrid
quantization of perturbations around it seems plausible.

The effective wave equations would contain modifications coming
from the quantum corrections of the background:

* Black hole horizon?

* Properties in the asymptotic region?

The physical choice of 1nitial conditions for the GW and the
appropriate definition of their quasinormal modes could vary.

We should count on the intuition and expertise gained in the
context of cosmology about similar issues (e.g. choice of vacuum).
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