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Abstract: In thistalk | will review work on “decomposition,’ a property of 2d theories with 1-form symmetries and, more generally, d-dim'l theories
with (d-1)-form symmetries. Decomposition is the observation that such quantum field theories are equivalent to ('decompose into’) digoint unions
of other QFTSs, known in this context as "universes." Examples include two-dimensional gauge theories and orbifolds with matter invariant under a
subgroup of the gauge group. Decomposition explains and relates several physical properties of these theories -- for example, restrictions on allowed
instantons arise as a "multiverse interference effect” between contributions from constituent universes. First worked out in 2006 as part of effortsto
understand string propagation on stacks, decomposition has been the driver of a number of developments since. In the first half of thistalk, | will
review decomposition; in the second half, 1 will focus on the recent application to anomaly resolution of Wang-Wen-Witten in two-dimensional

orbifolds.
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My talk today concerns the application of decomposition,
a new notion in quantum field theory (QFT),
to resolution of anomalies as proposed in Wang-Wen-Witten.

Briefly, decomposition is the observation that some QFTs
are secretly equivalent to
sums of other QFTs, known as ‘universes.
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What does it mean for one QFT to be a sum of other QFTs?

(Hellerman et al "'06)

1) Existence of projection operators
The theory contains topological operators II; such that
11, = 6,11, Z I, = 1
Correlation functions: '

(@]'"@n:) - Z(ni@l'"@m) - 2((1_[:@])(“:@":))

Z (@I'"ém)i
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What does it mean for one QFT to be a sum of other QFTs?

(Hellerman et al "'06)

1) Existence of projection operators
The theory contains topological operators II; such that
[0, = 5,11, Z I, = 1
Correlation functions: '

(0,--0,) = Y (,0,--0,) = Y ((I6,)-(1,0,))

Z (él'"érn>f

l

2) Partition functions decompose b

Z= ) exp(-pH) = Y7 = ) ) exp(—pH)

states

(on a connected spacetime)
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Decomposition # spontaneous symmetry breaking

SSB: Decomposition:

Superselection sectors: Universes:
* separated by dynamical domain walls * separated by nondynamical domain walls
. only genuinely disjoint in IR . disjoint at all energy scales
. only one overall QF T . multiple different QFTs present
Prototype: Prototype:

LR

(see e.g. Tanizaki-Unsal 1912.01033)
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There are lots of examples of decomposition !

Orbifolds: we’ll see many examples later today. (T Pantev, ES "05; D Robbins, ES, T Vandermeulen "21)
(In these examples, a subgroup of the orbifold group acts trivially.)

Gauge theories:

» 2d G gauge theory w/ center-invt matter = union of G/Z(G) theories w/ discrete theta (ES '14)
* 2d pure G Yang-Mills = sum of invertibles indexed by irreps of G (Nguyen, Tanizaki, Unsal 21)

* 4d gauge theory with restriction on instantons  (Tanizaki, Unsal 19)

Sigma models on gerbes = disjoint union of sigma models on spaces w/ B fields

Solves tech issue w/ cluster decomposition. (T Pantev, ES ‘05)

TFTs: 2d unitary TFTs w/ semisimple local operator algebras Hecompose to invertibles
Examples: (Implicit in Durhuus, Jonsson '93; Moore, Segal '06)

 2d abelian BF theory at level k = disjoint union of k invertibles (sigma models on pts)
* 2d Dijkgraaf-Witten = sum of invertible theories, as many as irreps
(In fact, is a special case of orbifolds discussed later in this talk.)
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Fun features of decomposition:

Multiverse interference effects

Ex: 2d SU(2) gauge theory w/ center-invariant matter = SO(3), + SO(3)_
Summing over the two universes (SO(3) gauge theories)
cancels out SO(3) bundles which don't arise from SU(2).

Wilson lines = defects between universes

Ex: 2d abelian BF theory at level &

1 &5 .
Projectors: Il = — Z gme, ¢ = exp(2zilk)

k
n=0

Clock-shift commutation relations: O,W, = {"W,0, <« §,W, = W,

p - tm4p mod k

Wormholes between universes
Ex: U(1) susy gauge theory in 2d: 2 chirals p charge 2, 4 chirals ¢ charge -1, W = Z qbf-q!;jA"f'(p)

T
Describes double cover of P! (sheets are universes), linked over locus where ¢ massless — Euclidean wormhole
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What do the examples have in common?
When is one QFT a sum of other QFTs ?

Answer: in d spacetime dimensions,
a theory decomposes when it has a (d — 1)-form symmetry.

(2d: Hellerman et al '06;
d>2: Tanizaki-Unsal '19, Cherman-Jacobson "20)

Decomposition & higher-form symmetries go hand-in-hand.

Today I'm interested in the case d = 2
so get a decompositionifa (d — 1) = 1-form symmetry is present.

What is a 1-form symmetry?
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What is a (linearly realized) one-form symmetry in 2d ?

For this talk, intuitively, this will be a “group’ that exchanges nonperturbative sectors.

Example: G gauge theory or orbifold in which matter/fields invariant under K C G

(Technically, to talk about a 1-form symmetry, we assume K abelian,
but decompositions exist more generally.)

Then, at least for K central, nonperturbative sectors are invariant under
(G — bundle) — (G — bundle) ® (K — bundle)

A A+ A
{'[‘cchnicall)'.
At least when K central, this is the action of the "group’ of K-bundles. ¢, o
1 associative.)
That group is denoted BK or K1) ‘

One-form symmetries can also be seen in algebra of topological local operators,
where they are often realized nonlinearly (eg 2d TFTs).
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What is a (linearly realized) one-form symmetry in 2d ?

For this talk, intuitively, this will be a “group’ that exchanges nonperturbative sectors.

Example: G gauge theory or orbifold in which matter/fields invariant under K C G

(Technically, to talk about a 1-form symmetry, we assume K abelian,
but decompositions exist more generally.)

Then, at least for K central, nonperturbative sectors are invariant under
(G — bundle) — (G — bundle) ® (K — bundle)

A A+ A
(Technically,
At least when K central, this is the action of the "gkoup’ of K-bundles. 575"

associative.)

That group is denoted BK or K*)

One-form symmetries can also be seen in algebra of topological local operators,
where they are often realized nonlinearly (eg 2d TFTs).

What sort of QFTs will I look at today ? ....
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The particular QF Ts I'm interested in today, which have a decomposition,
are (1+1)-dimensional theories with global 1-form symmetries

of the following form: (Pantev, ES os;

Hellerman et al '06)

Gauge theory or orbifold w/ trivially-acting subgroup
(<-> non-complete charge spectrum)

Theory w/ restriction on instantons

Sigma models on gerbes
= fiber bundles with fibers = ‘groups’ of 1-form symmetries G’ = BG

Algebra of topological local operators
Decomposition (into ‘universes’) often relates these pictures.
Examples: '
restriction on instantons = “multiverse interference effect”
1-form symmetry of QFT = translation symmetry along fibers of gerbe

trivial group action b/c BG = [point/G|
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Since 2005, decomposition has been checked in many examples in many ways. Examples:
* GLSM'’s: mirrors, quantum cohomology rings (Coulomb branch)

(T Pantev, ES "05; Gu et al 18-"20)
* Orbifolds: partition f'ns, massless spectra, elliptic genera (T Pantev, ES ‘o5; Robbins et al "21)
* Open strings, K theory (Hellerman et al hep-th/0606034) |
* Susy gauge theories w/ localization (ES 1404.3986) S
* Nonsusy pure Yang-Mills ala Migdal (ES "14; Nguyen, Tanizaki, Unsal '21) pol
" Adioint QCD, (Komargodski et al 20) * Numerical checks (Honda et al "21)
* Versions in d-dim’l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, 19; Cherman, Jacobson "20)

Applications include:

« Sigma models with target stacks & gerbes (T Pantev, ES '05)

* Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, etc starting '08)

* Nonperturbative constructions of geometries in GLSMs  (Caldararu et al 0709.3855, Hori 11, ...

L3

* Elliptic genera (Eager et al 20) * Anomalies (Robbins et al '21) ...Romo et al 21)
Today, I'll look at application to anomalies....
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My goal today is to apply decomposition to an anomaly resolution procedure
in orbifolds (Wang-Wen-Witten "17).

Briefly, the idea of www is that if a given orbifold [X/G] is ill-defined because
of an anomaly (which obstructs the gauging),

then replace G with a larger group I" whose action is anomaly-free.

1 >» K — I — G — 1

The larger group I" has a subgroup K C I that acts trivially on X,
and G =T/K. "

However, orbifolds with trivially-acting subgroups are standard examples in which
decomposition arises (in 1+1 dimensions), so one expects decomposition is relevant here.

(Hellerman et al '06)
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Plan for the remainder of the talk:

Describe decomposition in orbifolds with trivially-acting subgroups,

Add a new modular invariant phase: “quantum symmetry,” in H'(G, H'(K, U(1))),

L ]

Review the anomaly-resolution procedure of (Wang-Wen-Witten 17),

and apply decomposition to that procedure.

What we’ll find is that, in (1+1)-dimensions,

e —

QFT(“[X/G]"=[X/T']lz) = QFT(copies and covers of [X/znonanomalous subgp of G])

as a consequence of decomposition.
This gives a simple understanding of why the www procedure works,
as well as of the result.
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Decomposition in orbifolds in (1+1) dimensions

Let’s begin by discussing ordinary orbifolds w/o extra phases.
(We'll need a more complicated version for anomaly resolution,
but let’s start here, and build up.)

Consider an orbifold [X/I'], where K C I' acts trivially.

| — K— T — G — 1 (Kneednotbecentral) (K,I, G finite)

Decomposition implies

QFT ([X/T]) = QFT [XXK

‘ (Hellerman et al "06)
w

Page 16/48




Decomposition in orbifolds in (1+1) dimensions

Let’s begin by discussing ordinary orbifolds w/o extra phases.
(We'll need a more complicated version for anomaly resolution,
but let’s start here, and build up.)

Consider an orbifold [X/I'], where K C I' acts trivially.

|l — K— T — G — 1 (Kneednotbecentral) (K,I', G finite)
Decomposition implies

QFT ([X/T]) = QFT [XXK

] (Hellerman et al "06)
w

K = set of iso classes of irreps of K
G acts on K: p(k) — p(hkh") forhel aliftofge G

@ = phases called “discrete torsion” — see refs for details.
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Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I'], where K C I" acts trivially.

] — K— I — G — 1 (K need not be central)

Decomposition implies

XOK (Hellerman et al '06)
QFT ([X/T']) = QFT [T]
w

~

K = set of iso classes of irreps of K

Universes (summands of decomposition)
. : k5
correspond to orbits of G action on K.

Projectors: ForR=@.R;, R, € K related by the action of G, we have

= Z g ZZR,-(k_])Tk (Wedderburn's theorem for

p =
,- | K| = center of group algebra)
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Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I'], where K C I" acts trivially.

] — K — I — G — 1 (K need not be central)
Decomposition implies

QFT ([X/T']) = QFT [

X X K’] (Hellerman et al '06)
w

~

K = set of iso classes of irreps of K

If Kis in the center of I', then the G action Qn K is trivial,

and decomposition specializes to
— a disjoint union,

QFT ([X/T']) = QFT (H [X/G] m) as many elements
k as K

More gen'ly, get both copies and covers of [X/G], as we shall see.
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To make this more concrete, let’s walk through an example,
where everything can be made completely explicit.

Example: Orbifold [X/D4] in which the Z, center acts trivially.

— has BZ, (1-form) symmetry

Dy/Zy = Zy X Zg so this is closely related to a Z, x Z, orbifold

Decomposition predicts

QFT ([X/D,]) = QFT Xx K = QFT Xx2,
W G | | Z,xZ,|
w [ S [0

= QFT (IX/Zy X Zylwioar) || QFT (1X/2Z,x Z,14,)
(bc K = Z, centralinI" = D,)

(T Pantev, ES '05)

Let’s check this explicitly....
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Example, cont'd
QFT ([X/D,]) = QFT ([X/Z,X Zy)ysar) || QFT (1X/Z, % Z,),,)

At the level of operators, one reason for this is that the theory admits projection operators:

Let Z denote the (dim 0) twist field associated to the trivially-acting Z,:

Z obeys #* = 1.

Using that relation, w%form projection operators:

I
I, = —=(1=%x2 (5 specialization of formula
given earlier)

MJl.=0 T, +I_=1

—
H o
Il
-

H

Next: compare partition functions....
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Example, cont'd
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& ® X D
Compute the partition function of [X/Dj] (T Pantev, ES 09)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where 2 generates the Z, center.

Take the (1+1)-dim’l spacetime to be 77

The partition function of any orbifold [X/I"] on 77 is

Zp([XIT]) = — Z,, Where Z,;, = (g - — X)
3 h

(“twisted sectors”)

(Think of Z, , as sigma model to X with branch cuts g, /.)

We're going to see that

Zp: (XID))) = Zp2 (IXIZ, X Z3)) + Zp2 (IX/Z, X Z)y, )
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Example, cont'd
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LY
oMl -+l - B -
h h hz

. ® X D
Compute the partition function of [X /D] (T Pantev, ES ‘09)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zy =7y x Zy = {1,a,b,ab}  where @ = {a,az} etc

Z Zg where Z,, = | g - — X
g.heD,, gh=hg b

Since z acts trivially,

X/D —
Zp: (IX/Dy4]) il

Zg4.n is symmetric under multiplication by z

hz
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Example, cont'd
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0 ® X D
Compute the partition function of [X /D] (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zy =79 x Zy = {1,a,b,ab}  where @ = {a,az} etc

1
Z: ([X/D,]) = D] Z Zyp where Z,, = | g - — X
4 g.heD,, gh=hg ]
[}

Since z acts trivially,

Zg4 n is symmetric under multiplication by z

2 - <l - o -

SN VAN VA Vi
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Example, cont'd
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0 s X D
Compute the partition function of [X /D] (T Pantev, ES ‘09)

= {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zy =79 x Zy = {1,a,b,ab}  where @ = {a,az} etc

1
1D, | Z Zg where Z,, = | g - — X
4 g.heD,, gh=hg b

Since z acts trivially,

Zp: (IX/Dy)) =

Zg4 n is symmetric under multiplication by =z

l -l -l -l

h\/hzvhz

This is the BZ, 1-form symmetry.
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Example, cont'd

0 s X D
Compute the partition function of [X /D] (T Pantev, ES 09)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zy =7y x Ly = {1,a,b,ab}  where @ = {a,az} etc

1
ID | z Zg,h where Zg,h =19 . — X
4 gheD,gh=hg ]
1

Zp: (IX/Dy]) =

Each D, twisted sector (Z, ;) that appears is the same as a D, , = Z, X Z, twisted sector,

appearing with multiplicity | Z,|* % 4,

except for the sectors . . . which do not appear.
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Example, cont'd

i - X/D
Compute the partition function of [X/Dy] (T Pantev, ES '0)

Zr ([XIDy]) = lzfg IZZI | Z, | (Z- ([X/Z, x Z,]) — (some twisted sectors))
4

= 2(Zn([X/Zy% Z,]) — (some twisted sectors))

l
Fact: given any one partition function  Z, ([X/G]) = ﬁ 2 Z,

gh=hg
we can multiply in SL(2,Z)-invariant phases €(g, h)

to get another consistent partition function (for a different theory)

|
Z = — eg.hZ,,
Gl Z (& MZ,

gh=hg

There is a universal choice of such phases, determined by elements of H*(G, U(1))

This is called “discrete torsion.”
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Example, cont'd
it i X/D
Compute the partition function of [X/D.] (T Pantev, ES '09)

*(Zp2 (1X/Z, % Z,]) — (some twisted sectors))

Zp: (IX/D,]) = o 2|

= 2(Zn([X/Zy%x Z,]) — (some twisted sectors))
Ina Z, X Z, orbifold, discrete torsion € H*(Z, X 2, U(1)) = Z,,
and the nontrivial element acts as a sign on the twisted sectors
& . N - 3 . the same sectors which
5 = — were omitted above.

ab

Zp ([X/D4]) = Zp ([X"'Zz X Zzlwfod.t.) + Zp ([X/ZZ = ZZ]d-t‘)

Adding the universes projects out some sectors — interference effect.

Page 28/48
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Example, cont'd

it i X/D
Compute the partition function of [X /D] (T Pantev, ES '09)

_ | Zy X Z,|
| Dy |

Zp ([X/D4]) |Z,1* (Z» (1X/Z, % Z,]) — (some twisted sectors))

2(Zp2 ([X/Z,x Z,]) — (some twisted sectors))

Discrete torsion is H?(Zy x Zy,U(1)) =¥,

and acts as a sign on the twisted sectors

. . - . 7 . which were omitted above.
b ab

Zp ([XIDY)) = Zp ([X1Zy X Zy)poar) + Zp2 ([X1Zy % Z,)4,)
Matches prediction of decomposition
QFT ([X!D4]) = QFT ([Xsz X Zs)wio di_) H QFT ([XIZZ X ZZ]d.t.)

ab

Pirsa: 22010077 Page 29/48




Example, cont'd
ZT: ([X/D4]) = Zq‘E ([X‘,ZZ X Z2]wfu d.l.) s ZT: ([X/ZZ X ZE]G-I-)

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/ZyX Z,lyq a1 I QFT ([X/Z, X Z,)q,.)

The computation above demonstrated that the partition function on 77
has the form predicted by decompositian.
The same is also true of partition functions at higher genus
— just more combinatorics.
(see hep-th/0606034, section 5.2 for details)

Only slightly novel aspect: in gen’l, ofte finds dilaton shifts,
which mostly I'll suppress in this talk.
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Example, cont'd

Massless spectra forX= T6 (T Panteyv, ES "03)

Massless spectrum of D, orbifold

2 1 1
0O O 0O O 0O O
0O 54 O 0O §1 O o 3 O
2 54 54 2 = 13 3 1 +% 1 55
0O 5§54 O 0O 51 O 0o 3 O
0O O O O O O
2 1 1
/ spectrum of Z, x Z, orb’ spectrum of Z, x Z, orb’
Signals mult’ components w/o d.t. w/ d.t.

cluster decomp’ violation
matching the prediction of decomposition

CFT ([X/D4)) = CFT ([X/Z2 x Zolw/oas.) || CFT ([X/Z2 x Zoa..)
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This computation was not a one-off, but in fact verifies a prediction in Hellerman et al ‘06
regarding QFTs in (1+1)-dims with 1-form symmetry.

Another example: Triv’ly acting subgroup not in center

Consider [X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

Decomposition predicts X y (Hellerman etal’o6)
XXK )
QFT ([X/T']) = QFT l G ] where K = irreps of K
@ @ = discrete torsion

on universes

Here, G = H/{i) = Z, acts nontriv’ly on K = Z,,, interchanging 2 elements,

sO  QFT([X/H]) = QFT (x [ x/z,) H[X/Zz])

(Hellerman et al,
hep-th/0606034,
— different universes; X # [X/Z,] sect. 5.4)

— easily checked
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Decomposition in orbifolds in (1+1)-dims with discrete torsion
(Robbins et al "21)

Consider [X/T"] , where K C T acts trivially, w € H*(T, U(1)), and define G = I'/K.

] » K-> T %5 G — 1 (assume central)

)’

HX(G, U(1)) =5 (Kerr* ¢ HAT,U(1))) & H'\(G.H'(K, U(1)))

Cases: = Hom(G,K)
1) If i*aw # 0, P g. k
QFT ([X/T1],) = QFT 5
i " Checked in
2) If 1*@w =0 and 0, ( i
AN | e w8 o
@ Ker f(w)
\ ar

3) If *w = 0 and f(w) = 0, then w = 7*® forw € H*(G, U(1)) and

Xx K
QFT ([X/T'],) = QFT [ = ]
W+
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Let’s get back on track.

My goal today is to talk about anomaly resolution in 1+1 dimensions.

Decomposition will play a vital role in understanding how the anomalies are resolved.

Recall the idea of www is that given an anomalous (ill-defined) [ X/G],
replace G by a larger finite group " obeying certain properties,
] - K—T—G— L*

and add phases.

Because [ has a subgroup K that acts trivially,
orbifolds [ X/I"] will decompose,
into copies & covers of [ X/G].

However, just getting copies of [ X/G]| won't help.
We also need to add certain new phases, which | will describe next....
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New modular invariant phases: quantum symmetries (Tachikawa '17;
Robbins et al "21)

A quantum symmetry is a modular-invariant phase in orbifolds
in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, I%).

[t acts on twisted sector states by phases. Schematically:
where

gZ. = B(n(h),z) g. ;€K gherl

B e H(G,H(K, U(l
h h € H( ( (1))

These generalize the old notion of "quantum symmetries’ in the orbifolds literature;
those old quantum symmetries were determined by discrete torsion,
but the ones we need for anomaly resolution, aren't....
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New modular invariant phases: quantum symmetries

These are modular invariant — analogous to (but different from) discrete torsion.

Work on 72. Geometrically, this admits ‘Dehn twists’

Under such a twist,

h

gt‘hd

b
N/

] € SL(2,Z)

Discrete torsion: e(gh, gh?y = e(g, h)

Quantum symmetry: Z (g kI kY, g kih“ky) = Z e(gk,, hk,)
k kyeK k kK
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New modular invariant phases: quantum symmetries (Tachikawa '17;
Robbins et al "21)

A gquantum symmetry is a modular-invariant phase in orbifolds
in which a subgroup K acts trivially.
Classified by elements of H(G, H'(K, U(1))) = Hom(G, K).

Those qgantum symmetries in the image of /# are equivalent to discrete torsion:
/2

i d
(Keri* ¢ HAT, U(1))) — H'(G,H'(K,U(1))) —> WG, U(1)) (Hochschild '77)

Specifically, f(w) € H'(G,H'(K,U(1))) forw € H*(',U(1))st.w|, = 0.
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New modular invariant phases: quantum symmetries (Tachikawa "17;

Robbins et al "21)
A gquantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H(G, H'(K, U(1))) = Hom(G, K).

Those quantum symmetries in the image of /# are equivalent to discrete torsion:

3 d
(Kert* ¢ HA(I', U(1))) L» H\(G,H'(K, U(1))) — W3 (G, U(1)) (Hochschild '77)

For purposes of resolving anomalies,
weneed B € H'(G,H'(K, U(1))) such that d,B # 0.

These cases are not in im /3, so not determined by discrete torsion @ € HAT D).

They're also of independent interest, beyond anomaly resolution.

How does decomposition work with such phases?....

Pirsa: 22010077 Page 38/48




Decomposition in the presence of a quantum symmetry

Decomposition:

QFT(IX/T],) = GFT [XxCokerB}

Ker B
where B € H'(G,H'(K, U(1))) = Hom(G,K)
This is more or less uniquely determined by consistency with previous results.

Recall for discrete torsion w € Ker i* ¢ H*(T", U(1)), with (@) # 0,

X x Coker f(w)
Ker fi(w)
i *

QFT ([X/T'],) = QFT [ [

The result at top needs to include this as a special case, and it does.
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Decomposition in the presence of a quantum symmetry

Decomposition:
X x Coker B
FT ([X/T]z) = QFT
QFT ([X/T]z) = Q [ Ker B ]

Example: I'=2,, 1 — 2, — Z, — Z, — 1
Predict: QFT ([X/T']3) = QFT (X)

Check 77 partition function:

1 )
Z([XIZ,);) = Yz =

Pirsa: 22010077
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Now, finally, we have the tools to start applying to anomalies.

For the purposes of this talk, anomalies in a finite G gauge theory
in (n + 1) dimensions will be classified by H"**(G, U(1)).

This arises from considerations of "topological defect lines.
On the next slide I'll outline how that works in the case n = 0.

Then, I'll outline how anomaly resolution in (1+1) dimensions
can be understood via decomposition.
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Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
- why are anomalies are associated to group cohomology?

Suppose a (finite) group G acts on the states of a QM system: Forany |y), get p(g)|y).
For an honest group action, require p(g)p(h) = p(gh)

However, b/c we only care about states up to phases, we might instead have
Rap(h) = w(g,h)p(gh) for some w(g, h) € U(1)
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Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
- why are anomalies are associated to group cohomology?

Suppose a (finite) group G acts on the states of a QM system: Forany |y), get p(g)|w).
For an honest group action, require p(g)p(h) = p(gh)

However, b/c we only care about states up to phases, we might instead have

p(@)p(h) = w(g,h)p(gh) forsome w(g,h) € U(1)

Associativity = a)(gZ, g3) a)(gl, g2g3) = a)(glgg, 83) w(g] ) gz) (coclosed)

_ e(gh) :
Multiolv o bv phas = w(g,h) » w(g h) (coboundaries)
ultiply p by phase €(g) g 8 c(2)eth)
S .
Thus, the obstructions @ are classified by H*(G, U(1)) ,:2?:3:15

States are all in w-projective representations of G.
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Application to anomalies

O
Suppose we have an orbifold [X/G] in 1+1d which is anomalous,

anomaly a € H* (G, U(1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — ' — G —5 1 (I'll assume central)

where I"is chosen so that z*a € H>([", U(1)) is trivial.

The idea is then to replace [ X/G]| with [ X/I],

but, need to describe how I acts on X.
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Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly a € H*(G, U(1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — ' — G —5 1 (I'll assume central)

where I"is chosen so that z*a € H([", U(1)) is trivial.

The idea is then to replace [ X/G]| with [ X/1],

but, need to describe how [ acts on X.

If K acts triv’ly on X, and we do nothing else,
then we have accomplished nothing: ]

decomposition = QFT ([X/I']) = HQFT([X/G]) — still anomalous
R
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Application to anomalies

Suppose we have an orbifold [X/G] in 1+1d which is anomalous,
anomalya € H 3G, U(1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI’, 1 — K— I — G - 1 (assumed central)

2) Turn on quantum symmetry B € H'(G, H'(K, U(1)))
chosen so that d,B = a. Thisimplies 7*a € H3(, U(1)) is trivial.

K acts trivially on X, but nontrivially on twisted sector states via B
:

These two together — extension I plus B — resolve anomaly.

Decomposition explains how....
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Application to anomaly resolution

Procedure: replace anomalous [X/G] with non-anomalous [X/T7],
whered,B = a € H3(G, U(1)), the anomaly of the G orbifold.

Decomposition: — — using earlier results for
X x Coker B - ;
QFT ([X/T]3) = QFT decomp’ in orb
Ker B & w/ quantum symmetry

Note that sinced,B =a, « |KHB = )

So, Ker B C G is automatically anomaly-free!

Summary: [X/I']z = copies of orbifold by anomaly-free subgroup.
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Example: Resolve an anomalous orbifold [X/G|, G=2Z,X Z, = {1l,a,b,ab}

Anomaly a € H (Z, X Z,, U(1)) = (Z,)’ = {a) X (b) X {ab)

Extension 1: Define I' = D, | — £y = Dy —> 23 X £ —> 1

Quantum symmetry B determined by image on {a, b}

Results: | B@ | B®) | d—z‘Bz )| wiodtinba w/dt.inDa Get only
liciilaed anomaly-free
1 1 - |Gl xrGl, [X/(b)] subgroups,
1 1 s [X/(b)] x/G1] [ xrai,, varying
A | ) [X/{a)) [X/{ab)) b
1 1 (b) [X/{ab)] [X/{a)]
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