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Abstract: Fractons are relatively new types of quasiparticles which have recently been inspiring activity within several branches of physics. | will
offer some motivations and perspectives from quantum information theory, condensed matter physics, and high energy physics, focusing mainly on

my work in the latter two subjects. This talk is primarily based on https.//arxiv.org/abs/2108.08322 and a paper to appear shortly with Dominic
Williamson.
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What are fractons?

For the purposes of this talk, a fracton model is typically a quantum lattice
model (though sometimes a quantum field theory) which has any of the
following related properties:

» Quasi-particle excitations with limited mobility (e.g. planons, lineons,
fractons, etc.)

e Subsystem symmetries

» Ground state degeneracy which grows subextensively with the system size
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A motivation from quantum
Information:

Fractons are a solution to the problem of self-correcting quantum memory.
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Reminder: fault tolerance in quantum computing

« Kitaev: consider a gapped quantum lattice model with a degenerate ground

space. Demand that ground states are all locally indistinguishable from one
another.

* Encode information in the ground space. Rest of the Hilbert space serves as a
source of redundancy to protect your information from irreversible corruption.

 Errors in this picture occur when you’re taken out of the ground space. In

(2+1)D topological orders, errors are physically interpreted as anyonic quasi-
particle excitations.
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Example: Toric Code ; .'
e Hamiltonian: Hrc=->) 4,-> B, r

 Commuting projector model: ground states
obtained by imposing A, = B, = 1for allvand p. h <y

* Excited states: A, =-1orB,=-1.
Can be obtained by applying open string operators.

* Logical gates obtained by wrapping closed string operators around cycles of
the torus.

Fa?
O
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Limitations of toric code

» Gates are not universal; cannot perform arbitrary quantum computation.

* Quantum double model associated to an arbitrary finite group G is a
quantum error-correcting code. [s. cui, D. Ding, X. Han, G. Penington, D. Ranard, BR, Z. Shangnan]

* For suitable G, admits universal gates.
* Not self-correcting quantum memory.

* |f quantum computer is coupled to a heat bath, requires active monitoring
and continuous correction to avoid proliferation of errors.
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Limitations of toric code

» Gates are not universal; cannot perform arbitrary quantum computation.

* Quantum double model associated to an arbitrary finite group G is a
quantum error-correcting code. [s. cui, D. Ding, X. Han, G. Penington, D. Ranard, BR, Z. Shangnan]

* For suitable G, admits universal gates.
* Not self-correcting quantum memory.

* |f quantum computer is coupled to a heat bath, requires active monitoring
and continuous correction to avoid proliferation of errors.

» Before fractons, only systems known with self-correction were in (4+1)D.
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Haah'’s cubic code: a quantum hard-drive

Two qubits per vertex.

e Hamiltonian: #=-Y" (GX +G?)

cubes

* Fracton particles (errors) created
at the corners of fractal operators.

* Immobile in the sense that no local
operator is capable of moving a fracton
from one location to another.

Any local operator applied will
create additional fractonic particles.

» Errors stay localized as opposed to
wandering the system.
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A motivation from condensed
matter:

Critical point
Meltifg
P Liquid
Freezing .
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Landau paradigm

* Organize phases by the symmetries they break, as measured by
order parameters.
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Landau paradigm

* Organize phases by the symmetries they break, as measured by
order parameters.

* Topological orders: beyond the Landau paradigm? No!
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Higher-form symmetries

» A theory with (d + 1) spacetime dimensions is said to admit a g-form symmetry
() if it admits operators U, (M *~?) for each g € G and each (d-q)-
dimensional manifold M/ (?~% which satisfy:

« The operators are topological: correlation functions (Ug(M (d=a)y...)
are insensitive to deformations of 1/ (¢~% provided one does not deform
through a charged g-dimensional operator.

* The operators furnish the group muiltiplication:
UQ(M(d—Q))Uh(M(d—q)) = Ugh(M(d—Q))

« Since working on the lattice, will mostly consider operators inserted at a fixed
instant of time, so that they act on the Hilbert space of the theory.

* Higher form symmetries are not that exotic: even free electromagnetism has
higher-form symmetries.
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Confinement/deconfinement transition

breaks one-form symmetries

« Consider Z, lattice gauge theory in (2+1)D. Qubits on edges. w)

* Hamiltonian: Hrer=-) X.-g> _ [] Z.

P e€dp

e Gauss’s law: G, = H X, =1

e€star(v)

Uv®)

* One-form symmetry operators: U(y*) = H X,
eE’Y

« Charged Wegner-Wilson loop: W (y) = H Z.

* g < 1 phase: confined, one-form symmetry unbroken Wilson loop has area law.

* g > 1 phase: deconfined/toric code phase, one-form symmetry broken, Wilson

loop has perimeter law.
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Foliated (Zero-form) Subsystem Symmetries

Use F = {L{“"®1to denote a foliation of space by leaves of codimension-k.
On the lattice, we think of this as a set of sublattices of dimension (d-k).

Will use notation like fﬂy to denote a foliation of space by planes parallel to
the x and y directions.

We focus on operators at a fixed instant of time. A theory has a foliated (zero-
form) subsystem symmetry G\%® (F,, %, ...) /~of codimension-k if for each

g € G and each L4~® ¢ F, there are operators U,(L“~%) which commute with
the Hamiltonian.

The quotient by ~v indicates that there may be non-trivial relations satisfied
between symmetry operators supported on the leaves of different
foliations. If there are no relations, we refer to the symmetry as relation-free.
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Subgroups by coarsening

e Say that a foliation F of codimension-(k-m) is a coarsening of a foliation F of
codimension-k if each leaf . € F sits inside some leaf L¢ of F¢, and if
{L e F|LC Lc} is afoliation of L.

* If foliations 7, ..., F, admit a common coarsening F¢, then can obtain a
SUng’OUp G(U,k—m) (FC)/N - G(O,k) (fla o :Fn)
whose symmetry operators are defined as

UC(LC):ﬁ 1] v

t=1 LeF;
LCLc

_—

 Example: coarsen leads to zy>" (Fl,) c Zz? (Fl, Fl

Fl, 7] ),
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Example: (3+1)D Cubic Ising Model (CIM)

» Take a cubic lattice with qubits on vertices. Hamiltonian:

Hem = — Z XU_QZ H Z, ] |

vertices cubes vEcorner(c) i
v

e Calle.g. -7:” the foliation of the lattice by aII of its 1d sublattices which are
parallel to the x-direction. CIM supports azy¥ 2)(F” FI Flly /~ symmetry

e To descrlbe the relatlc()ns note that the planar subsystem symmetry subgroup
ZV(FL L FL L FL) 25 generated by the operators

N HU;k o =Ilvndlen v =TTvadlv,

acts trivially in the CIM Total global symmetry can be descnbed as
0,2 1 0)
zy"” (23" /Z))

* Aside: the Zgo) is a relation of arelation [[u v ]]vF =1
k i j
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Example: (3+1)D Cubic Ising Model (CIM) Part 2

Hamiltonian:

Heom = — X’U_QZ H*Zu

vertices cubes wEcorner(c)
c

« When g > 1, ground state degeneracy 2V="vtNuyNatNalNo=No=Ny=NoH1 grises
from spontaneous breaking of linear subsystem symmetry. Robust to
perturbations which respect this symmetry.

* Fractons are excitations of the cube term of the
Hamiltonian and can be created at the 8 corners
of a cuboid operator ][ X.. Immobile in isolation.

vel

Quadrupole of fractons produces a lineon.
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Higher-form subsystem symmetry

Intuition: a theory has a higher-form subsystem symmetry if it has an ordinary
higher-form symmetry within each leaf of its foliations.

More precisely: a theory has a G\*% (F, F,,...)/~ symmetry if for each g € G,
each leaf L(¢~% ¢ F;and each p(d-%-9) < f(d- ’f) there are symmetry operators
U, (M~ *=9)which are topological in the sense that correlation functions are
insensitive to deformations of A (¢—*~9 within the leaf L(¢—%).

Again, can define subgroups by,coarsening. For example, a GV (F]. ) planar
one-form subsystem symmetry group admits an ordinary G( ) one-form
symmetry subgroup.
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Example: (3+1)D X-cube model

* Qubits on the edges. 72 Zl,
* Hamiltonian: Hxc=-U ) X.—t ) Z ZZ 5 Vijay, Haah, Fu]
edges cubes Z yA
/l_

e Gauss’s law: -
G = s%ée e%e

» Within each plane, has toric-code like symmetry operators: U(y*) = H Xe

A/ eEn"

/|
/ > e | I/ 7/'"
__74__ ‘/

/ / / Figure taken from Ma, Lake, Chen, Hermele.

VoV
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Coupled wire/layer constructions

* |t is often possible to realize fracton order by foliating space with stacks of

lower-dimensional systems, and coupling the leaves of these stacks together.
[Ma, Lake, Chen, Hermele; Slagle, Aasen, Williamson; Prem, Huang, Song, Hermele, ...]

Addddddda

d 4 4d 4 4 4 4

" )
y dddddddd
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Coupled wire/layer constructions

* |t is often possible to realize fracton order by foliating space with stacks of

lower-dimensional systems, and coupling the leaves of these stacks together.
[Ma, Lake, Chen, Hermele; Slagle, Aasen, Williamson; Prem, Huang, Song, Hermele, ...]

Adddddddq

d 4 4d 4 4 4 4

. | % VYV 7
dddddddd
» Useful to revisit some of these constructions with higher-form subsystem
symmetry principles in mind. [BR, D. Williamson]

 Symmetry considerations reveal additional structure and logic which underlies
such models, and helps predict new examples.
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X-cube Model from Coupled Layers: Mechanism 1

» Consider 3 decoupled stacks of toric code/Zs gauge theory layers placed on
the leaves of the foliations 7, !l | 7], of a cubic lattice. Each edge belongs
to two toric code layers, so the I—fllbert space has two qubits per edge.

* Couple the layers together:
H = Hyc(Fl, Fl, Fl,) - Kx Y XX

Xy ? Yz 3
edges
e

« When Kx > 1, the low energy effective Hamiltonian is the X-cube model.
[Ma, Lake, Chen, Hermele]

* As Kxis taken from small to large, there is a phase transition from a
decoupled layer phase to an X-cube phase which is driven by “psstring
condensation”. Is this transition Landau?
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p-string condensation is Landau

Note that the decoupled toric code layers have a planar one-form subsystem
symmetry Zél’l)(]iﬂy, Fl .7—‘3|,Z) which is relation free. The coupling respects this
symmetry.

At small K, this entire symmetry is spontaneously broken.

At strong Kx, the low energy Hilbert space coincides with the ground space
of the X-cube model, which breaks a zy"" (F). , Fl,, 7 ) /" symmetry. Thus,

the one-form subgroup Zél) becomes unbroken in this phase.
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General mechanism

» Consider a target model with a G@* (F,, F,...)/ s symmetry.

» Approximate this symmetry structure by placing a (d-k)-dimensional theory
with an ordinary g-form symmetry on each of the leaves of the foliations
F1,Fa, . ... This yields a theory with a G(9F) (F,, F,,...) symmetry but without
any relations imposed.

« Strongly couple the leaves together with a term which drives a Landau
transition from a phase in which ¢ is broken to a phase in which it is
unbroken.

» Because .7#’is unbroken, it acts trivially on the low energy Hilbert space, and
so the low energy effective Hamiltonian looks like it has a G\%*) (Fy, F,...)/#
symmetry. Phase will typically coincide with that of the target model.
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Another example: Cubic Ising model from coupled wires

» Recall that CIM has a linear subsystem symmetry group zs"* (7, Fll, Fl) /7.
Relations described by its planar subgroup s« = z3"V (Fl., 7l Fl.) /Z5.

» Approximate this symmetry with a grid of decoupled Ising wires.

HIsing(‘F)UaFﬁ:'Fll) = Z Z(—hXﬁ o ’]Zﬁzﬂ )

v+
H=x,y,z2 v

* Couple the wires together. ..

H = Hyging(FJ, FI, F) — Kx Y (XEXY + XXX2 + XY X2)

v

* As K xis taken to be large, there is a phase transition into a phase where the
planar subgroup ¢ becomes unbroken.
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X-cube Model from Coupled Layers: Mechanism 2

» Consider again 3 decoupled stacks of toric code/Zs gauge theory layers
placed on the leaves of the foliations F!, 7!, 7, of a cubic lattice.

» This time, couple the leaves together simply by gauging the desired relation:

HLGT(‘}-}Uyﬂ‘E)UZ"F}UZ)/ZéU
* The relation ceases to be a gllobal symmetry of the gauged theory by fiat. The
gauged theory inherits a zy"" (F), Fl,, Fl) /Z5" global symmetry from the
ungauged theory.

* However, when you gauge a discrete one-form symmetry in (3+1)D, the _ )
gauged theory gains an emergent “quantum” global one-form symmetry Zg )
Where does this symmetry show up?
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Decoupled Zs gauge theory layers: HLGT(F)L'y,f)'flz, ; z)

Z(l 1)(‘F>UY7F)|J23 H ) Z(l 1)(f?|<|Y7I3|/|Z: H )

planar one—form planar one—form

subsystem symmetry subsystem symmetry
preserving phase breaking phase
)

gauging Z(Ql)
J

Gauged layers HLGT(]%Uy, Fz, ) /Z(l)
zW(AL A, F /Z( ) preserved
Zg ) broken

((3+1)D deconfined
gauge theory phase)

Z(l 1)(.7:}|c|y,.7:yz, /Z( ) broken

Zg ) preserved
(X-cube phase)

> 9
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Decoupled Zs gauge theory layers: HLGT(F)L'y,f)'flz, ; z)

Z(l 1)(‘F>UY:F}|J23 H ) Z(l 1)(f?UY7F3U27 H )

planar one—form planar one—form

subsystem symmetry subsystem symmetry
preserving phase breaking phase
)

gauging Z(Ql)
J

Gauged layers: HLGT(I}L'y, Fila, F. z)/Z(l)
Zs " (Fy Fls Fi) / 7" preserved
2&” broken

((3+1)D deconfined
gauge theory phase)

Zgl’l) (.F}L'y, fbuz, ]:,UZ) / Zgl) broken

251) preserved
(X-cube phase)

> 9
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General mechanism

* Consider a target model with a G@*) (F,, F,...)/ s symmetry.

» Approximate this symmetry structure by placing a (d-k)-dimensional theory
with an ordinary g-form symmetry on each of the leaves of the foliations
F1,Fa, . ... This yields a theory with a G9F) (F,, F,,...) symmetry but without
any relations imposed.

« Strongly couple the leaves together with a term which drives a Landau
transition from a phase in which ¢ is broken to a phase in which it is
unbroken.
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General mechanism

» Consider a target model with a G@* (F,, F,...)/ s symmetry.

» Approximate this symmetry structure by placing a (d-k)-dimensional theory
with an ordinary g-form symmetry on each of the leaves of the foliations
F1,Fa, . ... This yields a theory with a G(9F) (F,, F,,...) symmetry but without

any relations imposed.
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General mechanism

* Consider a target model with a G@* (F,, F,...)/ s symmetry.

» Approximate this symmetry structure by placing a (d-k)-dimensional theory
with an ordinary g-form symmetry on each of the leaves of the foliations
F1,Fa, . ... This yields a theory with a G(9F) (F,, F,,...) symmetry but without

any relations imposed.
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Another example: cubic Ising model




String theory has been historically useful for
gaining insight into quantum field theories

Pirsa: 21120029



o
)
O
-
@S
)




String theory has been historically useful for
gaining insight into quantum field theories

* In addition to strings, string theory admits extended objects called
“D-branes” on which strings can end.

* In certain limits, the physics of a web of branes is described by a
quantum field theory living on its world-volume.

* If you can embed a field theory into a string theory in this way, then
you can leverage the structure of the latter to reason about the
physics of the former.

* E.g. Hanany—Witten showed that S-duality of Type IIB string theory
implies infinite families of (supersymmetric) particle-vortex dualities
in (2+1)D. (The supersymmetric versions of particle-vortex dualities
are known as 3d mirror symmetry.)
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* Built out of D-dimensional fields which resemble

FOIiated field theories (FFTS [Slagle, Aasen, Williamson; Slagle; Hsin-Slagle]
* Roughly obtained as the continuum limit of the kinds of coupled layer/
coupled wire constructions described so far on the lattice.

A

stacks of decoupled d<D-dimensional fields.

 FFTs can be coupled to more conventional

field theories.

 Example: free (1+1)D compact boson wires

coupled to conventional (2+1)D

electromagnetism.

1
L: ~ -—Eég;z_[? /\‘k}T +

irsa: 21120029
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A supersymmetric foliated brane setup

y|3 4 5 6 7 8 9
X

t
BD2 [ x *D4y
Fp4l¥) | x

X

FD4gy)

oM HR

X X X X I*D4(2U)

x denotes a direction that the brane spans. i
:: iIndicates a direction in which the branes i D4y
form an evenly spaced lattice. L

T

Strings which stretch from the®D2 brane to D4y

itself contribute a (2+1)D gauge field (plus superpartners). FDA®  Fpa®  Fpa®  Fpg®

Strings which stretch from the ®D2 brane to a FD4§”) brane contribute a

hypermultiplet (i.e. two oppositely charged complex scalars plus superpartners) which
is localized at the intersection.

4-4 strings can be made to decouple. Each FD4£Ju ) brane supports a U(7) gauge field
on its world-volume whose gauge coupling goes to zero. Thus in this limit, each U(7)

becomes a global symmetry, and together they can be interpreted as a subsystem
symmetry.
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A foliated Hanany—Witten setup

e Going up by one-dimension and using D3/D5/NS5-branes of Type |IB
leads to foliated analogs of Hanany —Witten brane setups.

3 < a 2O~
|t z y 3 4 5 2 7 8 9 - - 2

BD3 [x x x X s _S-duality &

FD5, |[x x x x x x = o . R

« BD3-FD5, system leads to (3+1)D N=4 SYM coupled to a stack of
(2+1)D hypermultiplets.

« S-duality exchanges ¥ D5,, branes with *'NS5,, branes. The dual brane
setup is described by a long circular quiver with L U(7) gauge fields
and hypermultiplets in bifundamentals. Taking continuum limit of both
sides leads to interesting dualities of foliated field theories.
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Infinite-component Chern-Simons (iCS) theory

[Ma, Shirley, Cheng, Levin, McGreevy, Chen]

* Another approach to Abelian fracton order in (3+1)D is to consider a
large L number of (2+1)D gauge fields ! governed by a Chern-
Simons theory with a large (quasi-diagonal) K-matrix,

L
1
L = E Z KIJG“”pafﬁyag
I,J=1
One thinks of the index | as labeling different layers of a stack of

(2+1)D theories. Non-zero off-diagonal elements are interpreted as
inter-layer couplings.
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Infinite-component Chern-Simons (iICS) theory

[Ma, Shirley, Cheng, Levin, McGreevy, Chen]

* Another approach to Abelian fracton order in (3+1)D is to consider a
large L number of (2+1)D gauge fields ! governed by a Chern-
Simons theory with a large (quasi-diagonal) K-matrix,

L
1
L = i Z KIJG“"pach?yag
1,J=1 ,
One thinks of the index | as labeling different layers of a stack of

(2+1)D theories. Non-zero off-diagonal elements are interpreted as
inter-layer couplings.

* Fractonic because e.g. ground state degeneracy on the torus is
|det(K)|which can grow exponentially with L.
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ICS theories from brane-tilings

t z y|3 4 5 6 7 8 9
D4l |x x x| |x x|
NS5 |x x x| x X

* Integrating out chiral multiplets of the
N=2 quiver Chern-Simons theory leads
in the IR to an Abelian CS theory with a
quasi-diagonal K-matrix.
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D5°~! 4= D5? — D5% ¢— D5®
L 4 L 4 ®
D5% — D5! 1 D5* — > D5°
® . .
D5L—® ¢ D52 — D53 41— D5*
OF A 4 ® ®
a 2 -1
2 b 1
1 a 2 -1
-1 2 b 1
Bh)= 1 a 2 -1
—1 2 b1
1 a 2
-1 2 b
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Ak

Conclusions
* Fractons solve long-standing problem in quantum information theory.

* They form new stable phases of quantum lattice models. They can
often be understood in terms of higher-form subsystem symmetries.

* They have analogies to brane physics which we’re just at the
beginning of exploring.

Thank youl!

irsa: 21120029 Page 44/44



