Title: Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity

Speakers: Leah Jenks

Series: Cosmology & Gravitation

Date: December 16, 2021 - 1:00 PM

URL: https://pirsa.org/21120023

Abstract: In this talk I will give an overview of recent and ongoing work regarding rotating black holes in dynamical Chern-Simons (dCS) gravity. dCS gravity is a well motivated modified theory of gravity which has been extensively studied in gravitational and cosmological contexts. I will first discuss unique geometric structures, 'the Chern-Simons caps,' which slowly rotating black holes in dCS gravity were recently found to possess. Motivated by the dCS caps, I will then discuss superradiance in the context of slowly rotating dCS black holes and show that there are corrections to the usual solution for a Kerr black hole. Lastly, I will comment on the observable implications for these corrections and point towards avenues for future work.

Zoom Link: https://pitp.zoom.us/j/95228483630?pwd=dWk1c3p5dUU3RXJrNEhIT2M3Tk1Kdz09

Pirsa: 21120023 Page 1/29

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity

Leah Jenks
Brown University
Brown Theoretical Physics Center

arXiv:2104.00019 (PRD), arXiv:2201.XXXX S. Alexander, G. Gabadadze, LJ, N. Yunes

Perimeter Institute Strong Gravity & Cosmology Seminar December 16, 2021

Pirsa: 21120023 Page 2/29

Overview and Main Takeaways

Main Takeaways:

- 1. Dynamical Chern-Simons gravity (dCS) is a well-motivated theory with promising cosmological and gravitational implications
- 2. dCS black holes possess unique geometric structures the 'dCS caps' which may provide novel insights into deviations from GR
- 3. Superradiance induced by dCS black holes deviates from GR and has potential observable consequences

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 2

Pirsa: 21120023 Page 3/29

Big Picture

Modified Gravity

- BSM / string theory
- Dark matter / dark energy
- Deviations from GR
- Predicted observables

Observables: constraints and

2001.06373 (PRD) (Alexander, LJ, Magueijo, Zlosnik) 2007.09714 (PRD) (LJ, Yagi, Alexander)

signatures

Gravitational **Observables**

- Gravitational waves
 - LIGO/VIRGO
- Neutron stars / pulsars
- Black holes
 - EHT

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 3

Pirsa: 21120023 Page 4/29

Essential Physics

dCS caps: Chern-Simons pseudo scalar interaction induces non-standard behavior - analogy to angular momentum

Superradiance: unstable modes in a radiative system - analogy to driven resonance in harmonic oscillator

kipac.stanford.edu

B

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 4

Pirsa: 21120023

dCS Gravity: Motivations

- Chern-Simons term arises in string theory and effective field theory
 - Green-Schwarz mechanism (Green & Schwarz, 1984)
 - EFT of inflation (Weinberg, 2008)
- dCS gravity intrinsically includes an axion-like particle
- Cosmological, gravitational, and particle physics implications

Ş

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 5

Pirsa: 21120023

dCS Gravity: Action

Jackiw & Pi 2003, Alexander & Yunes 2007+
$$S_{\text{vac}} = \int d^4x \sqrt{-g} \left[\kappa R + \frac{\alpha}{4} \vartheta_{\triangleright}^* R R - \frac{1}{2} (\nabla_a \vartheta) (\nabla^a \vartheta) \right]$$

Modified Einstein Eq.

$$G_{ab} + \frac{\alpha}{\kappa} C_{ab} = \frac{1}{2\kappa} T_{ab}$$

$$C^{ab} = (\nabla_c \vartheta) \epsilon^{cde(a} \nabla_e R^{b)}_d + (\nabla_c \nabla_d \vartheta) *R^{d(ab)c}$$

Pseudo-scalar EoM

$$\Box \vartheta = -\frac{\alpha}{4\kappa} *RR$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 6

Pirsa: 21120023

dCS Gravity: Effective Field Theory

We can write the dCS action as:

$$S = \int d^4x \sqrt{-g} \left[\kappa R + \frac{\sigma}{4\mu} *RR - \frac{1}{2} (\nabla_a \sigma) (\nabla^a \sigma) \right]$$

In principle, we have an infinite sum of higher dimensional terms

- Truncate the series at the first term
- We never reach the scale at which dCS breaks down
- $\mu \ll M_{pl}$, highly unconstrained from observations

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 7

Pirsa: 21120023 Page 8/29

dCS Gravity: Slowly Rotating Solution

luis lehner

Yunes & Pretorius 2009, Yagi, Yunes & Tanaka 2012, Maselli, et al. 2017

$$ds^{2} = ds_{K}^{2} + \frac{5}{4}\zeta M \chi \frac{M^{4}}{r^{4}} \left(1 + \frac{12}{7} \frac{M}{r} + \frac{27}{10} \frac{M^{2}}{r^{2}} \right) \sin^{2}\theta dt d\phi$$

$$\vartheta = \frac{5}{8}\alpha \chi \frac{\cos\theta}{r^{2}} \left(1 + 2\frac{M}{r} + \frac{18}{5} \frac{M^{2}}{r^{2}} \right)$$

Deviations from Kerr

$$r_{\pm} = r_{\pm, K} \mp \frac{915}{28672} M \zeta \chi^{2}$$

$$r_{\text{ergo}} = r_{\text{ergo}, K} - \frac{915}{28672} M \zeta \chi^{2} \left(1 + \frac{2836}{915} \sin^{2} \theta \right)$$

B

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 8

Page 9/29 Pirsa: 21120023

dCS Gravity: Effective Field Theory

luis lehner

We can write the dCS action as:

$$S = \int d^4x \sqrt{-g} \left[\kappa R + \frac{\sigma}{4\mu} *RR - \frac{1}{2} (\nabla_a \sigma) (\nabla^a \sigma) \right]$$

In principle, we have an infinite sum of higher dimensional terms

- Truncate the series at the first term
- We never reach the scale at which dCS breaks down
- $\mu \ll M_{pl}$, highly unconstrained from observations

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 7

Pirsa: 21120023 Page 10/29

dCS Gravity: Slowly Rotating Solution

Yunes & Pretorius 2009, Yagi, Yunes & Tanaka 2012, Maselli, et al. 2017

$$ds^{2} = ds_{K}^{2} + \frac{5}{4}\zeta M \chi \frac{M^{4}}{r^{4}} \left(1 + \frac{12}{7} \frac{M}{r} + \frac{27}{10} \frac{M^{2}}{r^{2}} \right) \sin^{2}\theta dt d\phi$$

$$\vartheta = \frac{5}{8}\alpha \chi \frac{\cos\theta}{r^{2}} \left(1 + 2\frac{M}{r} + \frac{18}{5} \frac{M^{2}}{r^{2}} \right)$$

Deviations from Kerr

$$r_{\pm} = r_{\pm, \text{K}} \mp \frac{915}{28672} M \zeta \chi^2$$

$$r_{\text{ergo}} = r_{\text{ergo}, \text{K}} - \frac{915}{28672} M \zeta \chi^2 \left(1 + \frac{2836}{915} \sin^2 \theta \right)$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 8

Page 11/29

The Chern-Simons Caps: Motivations

Recall:

$$R_{ab} = 8\pi \bar{T}_{ab} - 16\pi \alpha C_{ab}$$

13

Geodesic focusing:

$$R_{ab}u^au^b>0$$

dCS gravity naturally has the structure to violate the focusing theorem!

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 9

Pirsa: 21120023 Page 12/29

The Chern-Simons Caps: Geodesic Focusing

Consider a stationary timelike observer in the slowly rotating dCS spacetime:

$$R_{ab} k_{st}^{a} k_{st}^{b} = \frac{45}{4} \zeta \chi^{2} f \frac{\gamma^{8}}{M^{2}} \left[1 + 2c_{\theta}^{2} + \frac{40\gamma}{15} \left(1 + \frac{3}{4} c_{\theta}^{2} \right) + 6\gamma^{2} \left(1 + \frac{1}{3} c_{\theta}^{2} \right) - \frac{312}{5} \gamma^{3} c_{\theta}^{2} \right] + \mathcal{O}(\zeta \chi^{4})$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 10

Pirsa: 21120023 Page 13/29

The Chern-Simons Caps: Geometry

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 11

Page 14/29 Pirsa: 21120023

The Chern-Simons Caps: Radial Null Geodesics

$$R_{ab} l^{a} l^{b} = \frac{25}{32} \zeta \chi^{2} f \frac{\gamma^{6}}{M^{2}} \left[c_{\theta}^{2} + 4\gamma c_{\theta}^{2} + \frac{72}{5} \gamma^{2} \left(1 + \frac{43}{24} c_{\theta}^{2} \right) + \frac{192}{5} \gamma^{3} \left(1 + \frac{13}{32} c_{\theta}^{2} \right) + \frac{432}{5} \gamma^{4} \left(1 - \frac{1}{15} c_{\theta}^{2} \right) - \frac{19872}{25} \gamma^{5} c_{\theta}^{2} \right] + \mathcal{O}(\zeta \chi^{4}),$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 12

Pirsa: 21120023 Page 15/29

The Chern-Simons Caps: Implications

- Condition for Hawking-Penrose singularity theorem is violated
- Energy condition of the effective energy-momentum tensor
- Behavior of matter close to dCS black holes

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 13

Page 16/29 Pirsa: 21120023

Superradiance in dCS Gravity: Motivations

- Scalar field amplified by rotation of black hole (Black hole bomb - Press & Teukolsky, 1972)
- "String Axiverse" Arvanitaki et al., 2009 +
- Extended to vectors (eg East & Pretorius, 2017, East 2017 +, Baryakhtar et al., 2017) and tensors (eg Brito, 2020)

kipac.stanford.edu

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 14

Pirsa: 21120023 Page 17/29

Superradiance in GR

Massive scalar field on a Kerr black hole background:

$$(\Box_{\mathbf{K}} - \mu^2)\varphi_{\mathbf{K}}(t, r, \theta, \phi) = 0$$

Detweiler limit: $\omega M \ll 1$, $\mu M \ll 1$ (Detweiler, 1980):

$$\varphi_{\ell,m} = e^{-i\omega_{\rm K}t}e^{im\phi}S_{\ell}(\theta)R_{\ell}(r)$$

Frequency spectrum: $\ell=1$, m=1:

$$Im(\omega_{\kappa}) = \mu \left(\frac{a}{M}\right) \frac{(\mu M)^8}{24}$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 15

Pirsa: 21120023 Page 18/29

Superradiance in dCS Gravity: Setup

Theory: dCS gravity + scalar field

$$S = S_{\text{eh}} + S_{\text{dCS}} + S_{\vartheta} + S_{\varphi}$$

$$S_{\varphi} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} g^{ab} \nabla_a \varphi \nabla_b \varphi - \frac{1}{2} \mu^2 \varphi^2 \right]$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 16

Pirsa: 21120023 Page 19/29

Superradiance in dCS Gravity

Klein-Gordon Equation up to $\mathcal{O}(\zeta \chi^2)$

$$(\Box_{\mathbf{K}} + \Box_{\mathbf{dCS}} - \mu^2)\varphi = 0$$

Ansatz with $\omega M \ll 1$, $\mu M \ll 1$

$$\varphi_{\ell,m} \propto e^{-i\omega_{\ell}t} e^{im\phi} P_{\ell}^{m}(\cos\theta) f_{\ell,m}^{0}(r) + e^{im\phi} \zeta \chi^{2} \left(e^{-i\omega_{\ell}t} P_{\ell}^{m}(\cos\theta) \tilde{f}_{\ell,m}^{\text{dCS}}(r) + e^{-i\omega_{\ell+2}t} P_{\ell+2}^{m}(\cos\theta) \tilde{f}_{\ell+2,m}^{\text{dCS}}(r) + e^{-i\omega_{\ell-2}t} P_{\ell-2}^{m}(\cos\theta) \tilde{f}_{\ell-2,m}^{\text{dCS}}(r) \right)$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 17

Pirsa: 21120023 Page 20/29

Asymptotic Matching

- Far zone: r >> M
- Near zone: $r-r_H \ll \max(\ell/\omega, \ell/\mu)$
- Buffer zone: r >> M, $r-r_H << \min(\ell/\omega, \ell/\mu)$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 18

Pirsa: 21120023 Page 21/29

Near zone metric resummation

dCS metric has spurious divergences at Schwarzschild and Kerr horizons, so we need to resum:

- Resummed metric identically reduces to original metric when expanded in small $\chi \ll 1$
- Each component remains finite everywhere outside the dCS horizon

$$\bar{\Delta} = \Delta + \frac{915}{14336} M \zeta \chi^2$$

$$\delta g_{rr} = \frac{915}{14336} \frac{M^2 r^2 \zeta \chi^2}{\bar{\Delta}^2}$$
$$\delta g_{tt} = \frac{915}{14336} \frac{M^2 \chi^2 \zeta}{r^2}$$

$$\delta g_{tt} = \frac{915}{14336} \frac{M^2 \chi^2 \zeta}{r^2}$$

$$g_{rr,\text{resum}} = g_{rr,K}(\Delta \to \bar{\Delta}) + g_{rr,dCS}(f \to \bar{\Delta}/r^2) + \delta g_{rr}$$
$$g_{tt,\text{resum}} = g_{tt,K}(\Delta \to \bar{\Delta}) + g_{tt,dCS}(f \to \bar{\Delta}/r^2) + \delta g_{tt}$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 19

Superradiance in dCS Gravity: Frequencies

Page 23/29

Frequency spectrum:

- ℓ, ℓ+2 maximized for ℓ=1, m=1
 ℓ-2 maximized for ℓ=3, m=1

$$\ell = 1$$

$${
m Im}(\omega_\ell)pprox \murac{(\mu{
m M})^8}{24}\left(\chi-2\mu{
m r}_+
ight)$$

$$\operatorname{Im}(\omega_{\ell+2}) \approx \mu \frac{(\mu M)^{16}}{129024000} (\chi - 2\mu r_+)$$

 $\ell = 3$

$$\mathrm{Im}(\omega_{\ell-2})pprox \murac{(\mu\mathrm{M})^8}{24}\left(\chi-2\mu\mathrm{r}_+
ight)$$

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 20

Superradiance in dCS Gravity: Frequency Spectrum

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 21

Page 24/29 Pirsa: 21120023

Superradiance in dCS Gravity: Angular Dependence

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 22

Page 25/29 Pirsa: 21120023

Superradiance in dCS Gravity: Time Evolution

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 23

Page 26/29 Pirsa: 21120023

Superradiance in dCS Gravity: Observables & Future Work

Observables:

- Black hole spin-down (Arvanitaki et al., 2009, Arvanitaki & Dubovsky, 2010 +)
 - Regge plane constraints
- Gravitational wave emission (Arvanitaki et al., 2009, Arvanitaki & Dubovsky, 2010 +)
- EHT observations (eg Davoudiasl & Denton, 2019)

Event Horizon Telescope

B

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 24

Pirsa: 21120023 Page 27/29

Superradiance in dCS Gravity: Observables & Future Work

Fermionic Superradiance in dCS?

- Fermions do NOT super radiate in GR Unruh 1974
- Potential for presence of caps and dCS scalar to evade this unlikely
- Potential for induced superradiance
 - Analogy to fermion preheating (Green & Kofman, 1998)
 - Analogy to induced EM superradiance (Boskovic et al., 2018)

B

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 25

Pirsa: 21120023 Page 28/29

Summary & Conclusions

- dCS gravity provides a vast background to search for observations of modified gravity
- The dCS caps may provide a window into observable signatures
- Superradiance in dCS gravity is distinct from GR, leads to small corrections in the scalar profile
- More work is necessary!

Thank you!

Leah Jenks

Aspects of Rotating Black Holes in Dynamical Chern-Simons Gravity 26

Pirsa: 21120023 Page 29/29