Title: Quantum many-body topology of crystals and quasicrystals

Speakers: Dominic Else

Series: Colloquium

Date: December 08, 2021 - 2:00 PM

URL: https://pirsa.org/21120022

Abstract: When an interacting quantum many-body system is cooled down to its ground state, there can be discrete "topological invariants" that characterize the properties of such ground states. This leads to the concept of "topological phases of matter" distinguished by these topological invariants. Experimental manifestations of these topological phases of matter include the integer and fractional quantum Hall effect, as well as topological insulators.

In this talk, after a general overview of topological phases of matter, I will explain how to define topological invariants that are specific to the ground states of regular crystals, i.e. systems that are periodic in space. I will discuss the physical manifestations of the resulting "crystalline topological phases", including implications for the properties of crystalline defects such as dislocations and disclinations. Then, I will explain how these ideas can be generalized to quasicrystals, which are a different class of materials that have long-range spatial order without exact periodicity. These ideas ultimately lead to a general classification principle for crystalline and quasicrystalline topological phases of matter.

Pirsa: 21120022 Page 1/41

Quantum many-body topology of crystals and quasicrystals

Dominic Else (Harvard → Perimeter)

Colloquium, Perimeter Institute
December 8, 2021

Pirsa: 21120022 Page 2/41

Low-temperature quantum many-body physics

Local Hamiltonian
$$H = \sum_X h_X$$

Effective field theory

UV Microscopic lattice Hamiltonian

IR Low-energy, low temperature, long-wavelength physics can be described by an "effective field theory"

Pirsa: 21120022 Page 6/41

Pirsa: 21120022 Page 7/41

"Fractionalized" topological phase of matter

[aka "Non-invertible" or "Long-range entangled" topological phase]

Fractionalized topological phases have non-trivial fractionalized excitations

Ground state

Localized excitation on top of the ground state

Fractionalized excitation: a localized excitation that cannot be created locally

Pirsa: 21120022 Page 8/41

Fractionalized excitations

 Can carry fractional charges under global symmetries

Pirsa: 21120022 Page 9/41

Fractionalized excitations

- Can carry fractional charges under global symmetries
- Can have non-trivial exchange/bradiding statistics ("anyons")
- Experimentally realized, e.g. in "fractional quantum Hall effect"

Pirsa: 21120022 Page 10/41

"Unfractionalized" topological phases

[aka "Invertible" or "Short-range entangled" topological phase
Also has a large overlap with "symmetry-protected topological (SPT)" phases]

Example: Integer quantum Hall effect

$$\mathbf{E}=
ho\mathbf{J}$$
 $ho=egin{bmatrix}
ho_{xx}&
ho_{xy}\-
ho_{xy}&
ho_{xx}\end{bmatrix}$

[von Klitzing, Rev. Mod. Phys. 1987] ρ_{xy} ρ_{xx} $[\Omega]$

Magnetic field [T]

Pirsa: 21120022 Page 11/41

"Unfractionalized" topological phases

[aka "Invertible" or "Short-range entangled" topological phase Also has a large overlap with "symmetry-protected topological (SPT)" phases]

Example: Integer quantum Hall effect

В

$$R_K = \frac{e^2}{2\pi\hbar} \approx 25813\,\Omega$$

 $[\Omega]$

$$\mathbf{E} = \rho \mathbf{J}$$

$$\rho = \begin{bmatrix} \rho_{xx} & \rho_{xy} \\ -\rho_{xy} & \rho_{xx} \end{bmatrix}$$

[von Klitzing, Rev. Mod. Phys. 1987]

 $\mathbf{J} = \sigma \mathbf{E}$

Conductivity tensor

[Work in units in which $e = \hbar = 1$]

In the integer quantum hall effect:

$$\sigma = \begin{bmatrix} 0 & m/(2\pi) \\ -m/(2\pi) & 0 \end{bmatrix}$$
 $\sigma = \begin{bmatrix} m \\ 2\pi \end{bmatrix}$
 $\sigma^{ij} = \frac{m}{2\pi} \epsilon^{ij}$

$$\sigma^{ij} = \frac{m}{2\pi} \epsilon^{ij}$$

Charge density

$$J^i = \frac{m}{2\pi} \epsilon^{ij} E_j \qquad \rho = \frac{m}{2\pi} B$$

$$J^{\mu} = \frac{m}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$

$$J^i = \frac{\mathbf{m}}{2\pi} \epsilon^{ij} E_j \qquad \rho = \frac{\mathbf{m}}{2\pi} B$$

$$J^{\mu} = \frac{m}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$

• Topological response – the above equation does not depend on the metric and is invariant under arbitrary diffeomorphisms of space-time

$$J^i = \frac{\mathbf{m}}{2\pi} \epsilon^{ij} E_j \qquad \rho = \frac{\mathbf{m}}{2\pi} B$$

$$J^{\mu} = \frac{m}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$

- Topological response the above equation does not depend on the metric and is invariant under arbitrary diffeomorphisms of space-time
- Non-dissipative: rate of work done by the electric field is

$$J^i E_i \propto \epsilon^{ij} E_i E_j = 0$$

• Coefficient $m{\mathcal{m}}$ is quantized

Pirsa: 21120022

$$J^i = \frac{m}{2\pi} \epsilon^{ij} E_j \qquad \rho = \frac{m}{2\pi} B$$

$$J^{\mu} = \frac{m}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$

- Topological response the above equation does not depend on the metric and is invariant under arbitrary diffeomorphisms of space-time
- Non-dissipative: rate of work done by the electric field is

$$J^i E_i \propto \epsilon^{ij} E_i E_j = 0$$

• Coefficient m is quantized

Quantized topological responses characterize (unfractionalized) topological phases of matter

Quantization of Hall conductance

Magnetic flux Φ

Variant of [Laughlin, 1981]

If the flux is an integer multiple of 2π , then the charge must be an integer (for an unfractionalized topological phase)

$$m \in \mathbb{Z}$$

$$\int \rho(\mathbf{x})d^2\mathbf{x} = \int \frac{\mathbf{m}}{2\pi} B(\mathbf{x})d^2\mathbf{x}$$

Charge Flux
$$Q=rac{m}{2\pi}\Phi$$

$$J^i = \frac{\mathbf{m}}{2\pi} \epsilon^{ij} E_j \qquad \rho = \frac{\mathbf{m}}{2\pi} B$$

$$J^{\mu} = \frac{m}{4\pi} \epsilon^{\mu\nu\lambda} F_{\nu\lambda}$$

Can also think of this response as being generated by a *topological term* for the electromagnetic field (Chern-Simons term)

$$S[A] = \frac{m}{4\pi} \int d^3x \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda} \qquad J^{\mu} = \frac{\delta S}{\delta A_{\mu}}$$

Presentation follows [DVE, Huang, Prem, Gromov, arXiv:2103.13393]

Pirsa: 21120022 Page 19/41

Crystals

Are there topological responses specific to crystals?

Crystalline topological phases of matter

Discrete translation symmetry

Pirsa: 21120022 Page 20/41

Crystalline responses

Consider responses to *elastic* deformations

Pirsa: 21120022 Page 21/41

Elasticity field in 1D

Pirsa: 21120022 Page 22/41

Topological response in 1D

Suppose we have a global U(1) symmetry. Then there is an associated current J^{μ}

Then we have can have a topological response

$$J^{\mu} = \frac{\mathbf{m}}{2\pi} \epsilon^{\mu\nu} \partial_{\nu} \theta \qquad \qquad \mathbf{m} \in \mathbb{Z}$$

A "classical" picture: point charges bound to unit cells

Charge $m{m}$

$$\rho = \frac{m}{2\pi} \partial_x \theta$$

$$J^x = -\frac{m}{2\pi}\partial_t \theta$$

3

However, the topological invariant is still well-defined in any gapped system

 $m{\mathcal{m}}$ is the "charge per unit cell"

Quantization of the topological invariant

$$\rho = \frac{m}{2\pi} \partial_x \theta$$

$$\Delta Q_{\text{kink}} = m$$

Kink defect must have integer charge (in an unfractionalized topological phase)

Pirsa: 21120022

Generalizing to 2D crystals

Now have two fields $\theta^1(\mathbf{x},t)$ and $\theta^2(\mathbf{x},t)$

Topological response

$$J^{\mu} = \frac{\mathbf{m}}{(2\pi)^2} \epsilon^{\mu\nu\lambda} \partial_{\nu} \theta^1 \partial_{\lambda} \theta^2$$

m is still the "charge per unit cell"

Application: mobility of dislocations2

Pirsa: 21120022 Page 27/41

Application: mobility of dislocations2

If the topological invariant is nonzero, then dislocations can only move in the direction of their Burgers vector without violating conservation of charge

Can derive from the topological response

$$J^{\mu} = \frac{m}{(2\pi)^2} \epsilon^{\mu\nu\lambda} \partial_{\nu} \theta^1 \partial_{\lambda} \theta^2$$

Pirsa: 21120022

In 3D, two different kinds of responses with U(1) symmetry:

$$J^{\mu}_{\,\scriptscriptstyle \mid \!\scriptscriptstyle \mid} = \frac{m}{(2\pi)^3} \epsilon^{\mu\nu\lambda\kappa} \partial_{\nu} \theta^1 \partial_{\lambda} \theta^2 \partial_{\kappa} \theta^3$$

[charge per unit cell]

$$J^{\mu} = \sum_{I=3}^{3} \frac{\mathbf{m_I}}{8\pi^2} \epsilon^{\mu\nu\lambda\kappa} \partial_{\nu} A_{\lambda} \partial_{\kappa} \theta^I \qquad \qquad \boxed{ \begin{array}{c} \text{2D Integer quantum Hall} \\ \end{array}}$$

Pirsa: 21120022

Topological responses in quasicrystals

Pirsa: 21120022 Page 30/41

Crystals

Discrete translation symmetry

Pirsa: 21120022 Page 31/41

Quasicrystals

Ammann-Beenker tiling

Real space model: tilings No translation symmetry

Pirsa: 21120022 Page 32/41

Elastic modes for crystals and quasicrystals in 1D?

- Elastic mode of 1D crystal: $\theta(x,t) \in S^1$?
- Elastic modes of 1D quasicrystal $oldsymbol{ heta}(x,t) \in \mathbb{T}^D$ for D>1

Pirsa: 21120022

Elastic modes for crystals and quasicrystals in 1D?

- Elastic mode of 1D crystal: $\theta(x,t) \in S^1$?
- Elastic modes of 1D quasicrystal $oldsymbol{ heta}(x,t) \in \mathbb{T}^D$ for D>1

Two kinds of elastic modes: phonons and phasons

Pirsa: 21120022 Page 34/41

Topological response in a 1D quasicrystal

1D Crystals:

$$J^{\mu} = \frac{\mathbf{m}}{2\pi} \epsilon^{\mu\nu} \partial_{\nu} \theta$$

$$m \in \mathbb{Z}$$

1D Quasicrystals:

$$J^{\mu} = \sum_{I=1}^{D} rac{m{m_I}}{2\pi} \epsilon^{\mu
u} \partial_{
u} m{ heta}^{I} \qquad m{m_1}, \cdots, m{m_D} \in \mathbb{Z}$$

$$m_1,\cdots,m_D\in\mathbb{Z}$$

[DVE, Huang, Prem, Gromov, arXiv:2103.13393]

I pick how much charge I want to bind to each kind of tile

[DVE, Huang, Prem, Gromov, arXiv:2103.13393]

Pirsa: 21120022

Dislocations in quasicrystals

The mobility constraints on dislocations are still a straightforward consequence of the topological response

Pirsa: 21120022 Page 37/41

Extensions

 Crystals can also have pointgroup symmetries

Topological response affects disclination defects e.g. they can carry fractional charge

[Li, Zhu, Benalcazar, Hughes, PRB 101, 115115]

Pirsa: 21120022 Page 38/41

For a general symmetry group:

[includes both translation symmetry and point-group symmetry, as well as internal symmetry groups like U(1)]

Unfractionalized topological phases are classified by equivariant generalized cohomology

[Thorngren, DVE, PRX **8**, 011040 (2018)] [DVE, Thorngren, PRB **99**, 115116 (2019)]

For an alternative (but, it turns out, equivalent) approach:

[Song, Huang, Fu, Hermele, PRX **7**, 01220 (2017)] [Huang, Song, Huang, Hermele, PRB **96**, 205106 (2017)] [Song, Huang, Qi, Fang, Hermele, Sci. Adv. **5**, eaax2007 (2019)]

Extension to quasicrystals: [DVE, Huang, Prem, Gromov, arXiv:2103.13393]

Pirsa: 21120022 Page 39/41

Future directions

S

- Experimental applications
- Metals in quasicrystals?

Pirsa: 21120022 Page 40/41

Pirsa: 21120022 Page 41/41