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Abstract: When an interacting quantum many-body system is cooled down to its ground state, there can be discrete "topological invariants' that
characterize the properties of such ground states. This leads to the concept of "topological phases of matter" distinguished by these topological
invariants. Experimental manifestations of these topological phases of matter include the integer and fractional quantum Hall effect, as well as
topological insulators.

In this talk, after a general overview of topological phases of matter, | will explain how to define topological invariants that are specific to the
ground states of regular crystals, i.e. systems that are periodic in space. | will discuss the physical manifestations of the resulting "crystalline
topological phases’, including implications for the properties of crystalline defects such as dislocations and disclinations. Then, | will explain how
these ideas can be generalized to quasicrystals, which are a different class of materials that have long-range spatia order without exact periodicity.
These ideas ultimately lead to a general classification principle for crystalline and quasicrystalline topological phases of matter.
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Low-temperature quantum many-body physics
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Effective field theory

[

UV Microscopic lattice Hamiltonian

v

IR Low-energy, low temperature, long-wavelength physics

can be described by an “effective field theory”
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Gapped

VS.

Gapless

Scale-invariant quantum field theory
(e.g. conformal field theory)
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Topological quantum field theory Scale-invariant quantum field theory
(TQFT) (e.g. conformal field theory)
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“Fractionalized” topological phase of matter

[aka “Non-invertible” or “Long-range entangled” topological phase]

Fractionalized topological phases have non-trivial fractionalized excitations

No local operator

- / - .

Ground state Localized excitation on top of the ground state

Fractionalized excitation: a localized excitation that cannot be created locally
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Fractionalized excitations

* (Can carry fractional charges under
global symmetries
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Fractionalized excitations

* (Can carry fractional charges under
global symmetries

* Can have non-trivial
exchange/bradiding statistics
(“anyons”)

a a
O - -@® » Experimentally realized, e.g. in

e/3 -e/3 “fractional quantum Hall effect”
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“Unfractionalized” topological phases

[aka “Invertible” or “Short-range entangled”
topological phase o
Also has a large overlap with “symmetry-protected [von Klitzing, Rev. Mod. Phys. 1987]

topological (SPT)” phases]

Example: Integer quantum Hall effect
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“Unfractionalized” topological phases

[aka “Invertible” or “Short-range entangled”

topological phase o
Also has a large overlap with “symmetry-protected [von Klitzing, Rev. Mod. Phys. 1987]
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Hall conductance as a topological response

[Work in units in which e =h = 1]

J — O—E In the integer quantum hall effect:
'\\ o 0 m/(2m)
Conductivity _W"f/(Qﬂ-) 0
tensor
m € Z
L
2T
Charge density
f
¥
J=ig, S B\
Tr

irsa: 21120022

Page 13/41




Hall conductance as a topological response

J?’: UE. —
5 ¢'Ej P 2?TB
A
N ] m
| JH = —GMV/\FV)\
Gapped AT

* Topological response — the above equation does not depend on the metric
and is invariant under arbitrary diffeomorphisms of space-time
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Hall conductance as a topological response

i_ M iip _
J'=o-eVE;  p 2WB
]A
™m
| L epzxk N
Gapped ==

* Topological response — the above equation does not depend on the metric
and is invariant under arbitrary diffeomorphisms of space-time
* Non-dissipative: rate of work done by the electric field is

J?'Eg X EijE?;Ej =1

* Coefficient 7T is quantized
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Hall conductance as a topological response

= 5B p=o-B
l
A m
| TH E;u/)\ Fu)\
Gapped AT

* Topological response —the above equation does not depend on the metric
and is invariant under arbitrary diffeomorphisms of space-time
* Non-dissipative: rate of work done by the electric field is

J'E; x € ng‘Ej — 0 Quant|zeq topologlca!I responses
characterize (unfractionalized)
« Coefficient 770 is quantized topological phases of matter
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Quantization of Hall conductance

Variant of [Laughlin, 1981]

Magpetic flux & If the flux is an integer multiple of 27T,

then the charge must be an integer (for an
. unfractionalized topological phase)
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Hall conductance as a topological response

i_ M iip _
J'=o-eVE;  p 2WB
]A
™m
| S L epzxk N
Gapped =

Can also think of this response as being generated by a topological term
for the electromagnetic field (Chern-Simons term)

m
Al = dze"*A,0, A 59

Pirsa: 21120022 Page 18/41




Topological responses In crystals

Presentation follows [DVE, Huang, Prem, Gromoy, arXiv:2103.13393]




Crystals

Are there topological responses
specific to crystals?

Q Crystalline topological

phases of matter

Unit cell

Discrete translation symmetry
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Crystalline responses

Consider responses to elastic
deformations
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Elasticity field in 1D
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opological response in 1D

Suppose we have a global U(1) symmetry.
Then there is an associated current J#

Then we have can have a topological response

S = %6“’1"8 0 m € Z.
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A “classical” picture: point charges bound to unit cells

Charge
ge T However, the

E
topological
m m
p = %3@"9 J* = —%@9 invariant is still _
well-defined in ]/-\‘

I
any gapped system  Gapped

Tl isthe “charge per unit cell”
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Quantization of the topological invariant

m
IQW Q AQxink = M

Kink defect must have
integer charge

(in an unfractionalized
» topological phase)

b 1 € 7
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Generalizing to 2D crystals

Now have two fields 6! (x,¢) and 6%(x,t)

Topological response

Jh = 29 019, 62

(2m)°

TN, is still the “charge per unit cell”

irsa: 21120022 Page 26/41




Application: mobility of dislocations2

Burgers
vector
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Application: mobility of dislocations2

If the topological invariant is
nonzero, then dislocations can
only move in the direction of
their Burgers vector without

% violating conservation of charge

Can derive from the topological
response

T = 2,01 9,6

Burgers (277)
vector

2
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* In 3D, two different kinds of responses with U(1) symmetry:

JH = (2";”)3 209,01 0562063

[charge per unit cell]

2D Integer

3 quantum Hall

JH = 8m_,u,1/)\ﬁ:8A8914»
=3

\\\\
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Topological responses in
quasicrystals
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Crystals

Fourier

ﬁ

transform

Discrete translation symmetry
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Quasicrystals

Ammann-Beenker tiling

AR AT

MG ML I
I INTICI AT
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transform

Real space model: tilings
No translation symmetry
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Elastic modes for crystals and quasicrystals in 1D?

+ Elastic mode of 1D crystal: 0(x,t) € S17

» Elastic modes of 1D quasicrystal 8 (x, t) € TP forp > 1

6
2T T
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Elastic modes for crystals and quasicrystals in 1D?

+ Elastic mode of 1D crystal: 0(x,t) € S1?

» Elastic modes of 1D quasicrystal 8(z,t) € T forp > 1

6
2T T

Two kinds of elastic modes:
phonons and phasons
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Topological response in a 1D quasicrystal

1D Crystals:

JH = gewaye m € 7,
a1

1D Quasicrystals:

JH=3 o080 My, ,Mp € Z.

[DVE, Huang, Prem, Gromov, arXiv:2103.13393]
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| pick how much charge |
want to bind to each

kind of tile
I12 l13 l14
I23 I24 | 34

[DVE, Huang, Prem, Gromov, arXiv:2103.13393]

Pirsa: 21120022

Page 36/41




Dislocations in quasicrystals

The mobility constraints on dislocations are still a
straightforward consequence of the topological response
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Extensions

 Crystals can also have point-
group symmetries

Topological response affects disclination defects
e.g. they can carry fractional charge
[Li, Zhu, Benalcazar, Hughes, PRB 101, 115115]
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For a general symmetry group:

[includes both translation symmetry and point-group symmetry, as well as internal symmetry groups like U(1)]

Unfractionalized topological phases are classified by
equivariant generalized cohomology

[Thorngren, DVE, PRX 8, 011040 (2018)]
[DVE, Thorngren, PRB 99, 115116 (2019)]

For an alternative (but, it turns out, equivalent) approach:
[Song, Huang, Fu, Hermele, PRX 7, 01220 (2017)]

[Huang, Song, Huang, Hermele, PRB 96, 205106 (2017)]
[Song, Huang, Qi, Fang, Hermele, Sci. Adv. 5, eaax2007 (2019)]

Extension to quasicrystals: [DVE, Huang, Prem, Gromov, arXiv:2103.13393]
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Future directions

« Experimental applications
» Metals in quasicrystals?

irsa: 21120022

Page 40/41




"
,‘

PICAI T NI NI TR WK
7 TN T VR L VI gy VIR VR NV gy VI TN T NV gy N Ty M7
AT A NI L AT QI I NI I DTS AT AT /AT
‘\!‘V"\I‘\!’\‘F\\b!b\\!\\i’\‘hab\b\\I‘i e Mo Ve O A\
o NP0 VI M VN NI AN\ Y o /M A I
CIATA PIC AT FE/T AT/ ST P

WX C I AT MATIE 1D E 12N o Yuouy
NI LA S AP 2 T 5 AT AT

o L ole oL oo
UL\ M\

s N

g

\

\ Pt O Pt P O P
AP NI NN DM AT AN AN M
\ITIQICI NI/ QA ITIC N ICLAICIT NN
\

f

/

g

HY YRRy

\‘!‘!b\‘i‘!b\’!\‘!‘\!

\
“PE AN

b
Ao

NN N

N\ o\
LIRS

Ny N

\r </
Lo 2 Dol e

!\‘!‘VIN‘I

Ve
e\
I/

/

b Mo Vo </

‘o
o
A
s
=,

\

/

y

\
/<

\

\
\
e Vele e

D a P S fut B 7a0n Fafuy mOuve Taduy 20
AT NAITS A AT L AT I QIR NI AT
¢

o R
f M VI NI
\’!\‘!\“F\‘ﬂ"ﬂ\‘ﬁ

Vo o ' ole o

"
2
%

™ " N " A V 4 U WV AN o WA W o WU WV A O VW A & W VW AW & W 4

G VTN Ve VM VMV Mo Ve M VT AV VM W MV MM
TN I AT A AT M 7 M A TS AT I AT AT M N T M
NI ANITAQXAICI NICLAITA NI ANJTN PO NI N

F A VR W A VW W AV A N

Pirsa: 21120022 Page 41/41



