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Abstract: Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings. from the very early universe
through to present-day boson stars. Such quantum matter arises in UltraLight Dark Matter (ULDM): an exciting axion-like particle candidate which
keeps the successes of CDM on large scales but aleviates tensions on small scales. This small scale behavior is due to characteristic coresin ULDM
called solitons, which also correspond to the ground state of the self-gravitating quantum system governing ULDM. We calculate the full spectrum
of eigenstates and decompose simulations of ULDM into these states, allowing us to precisely track the evolution of the tell-tale soliton cores and
the surrounding halo "skirt". Using this formalism, we investigate formation of halos through binary soliton collisions and the dependence of the
final halo product on initial parameters. We further link characteristic ULDM halo behavior--such as the soliton "breathing mode" and random walk
of the center of mass--to the presence of certain modes. Finally, we comment on the relationship between eigenenergies and oscillatory timescales
present in the system, as well as future directions for understanding ULDM through the language of its eigenstates.
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The Many Faces of Dark Matter
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Venn diagram of Dark Matter theories circa 2013 from Tim Tait.
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Popularity of Axionic Dark Matter
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Data courtesy of Dr. Kelly Backes.
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UltraLight Dark Matter

UltraLight Dark Matter (ULDM):
- is an axion-like scalar boson
- has low mass: ~ 1072 eV
- forms Bose-Einstein condensates

- helps with small-scale problems

- core-cusp problem (right)
- missing satellites problem
- too-big-to-fail problem

- cool phenomenology!

Luna Zagorac | Yale University

e NFW (< 110 km s~

o IC 2574 W DDO 154
| O NGC 2366 ¥ DDO 53
v Ho | A M81dwB

-5 L QHoll

| L Lo el

1072 107!
R/Ro,s

Fig. 7 in Oh, Se-Heon, et al. AJ, 2011.
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The Schrodinger-Poisson System
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The Eigenstates
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Solving the Eigensystem

P = ( M, m(CD))1|)

2m
V20 = 4nGmpp|? :

p=mpl|?
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The Eigenstates

Note: these eigenstates pop out for both soliton and ULDM potentials!

Luna Zagorac | Yale University

Pirsa: 21120018 Page 10/26



Superposition of Eigenstates
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Radially-Symmetric Version: £ =0
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Radially-Symmetric Version:
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Asymmetric Version:
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Asymmetric Version: { # 0
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Building Up a Halo: Random Initial Conditions
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The profile is pretty stable...
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Halo Evolution: Random Initial Conditions

Time [code units]

..but the eigenstates vary a lot!

Luna Zagorac | Yale University
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Halo Evolution: Symmetric Initial Conditions
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Instead, symmetrically arrange solitons and track just the ground state soliton!

Luna Zagorac | Yale University
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Merger History Matters!

N = 4, sequentiual

== N = 4, simultaneous
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The order of mergers plays a role in the size of the final core!

Luna Zagorac | Yale University
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Core-Halo Mass Relation: In the Literature

(E? A Py simulations
p. i * & run -m (]

3

10°
= |E|/M3/(Gm/h)?

Schive et al. (2014) Schwabe et al. (2016) Mocz et al. (2017)
1407.7762 1606.05151 1705.05845

The size of the core relative to the halo is an important prediction
but there’s no consensus in the literature on the correct scaling!

Luna Zagorac | Yale University
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Core-Halo Mass Relation: Our (Preliminary) Data

Data Lit: oc =92%0
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Preliminary results suggest a scaling for equal mass, simultaneous soliton mergers
consistent with Schwabe et al. (1606.05151)

Luna Zagorac | Yale University
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Core-Halo Mass Relation: Our (Preliminary) Data

- Sim. Mergers: o 20219

Seq. Mergers: oc 20232

1072
== \E]/M?’

Comparing all data between simultaneous and sequential mergers shows
approximately the same slope, but also lots of scatter at small =
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Core-Halo Mass Relation: Our (Preliminary) Data

Sim. Mergers: oc =020

Seq. Mergers: oc 29319

1072
E=|E|/M?

Truncating the data at N < 10 solitons shows a slope
more consistent with Mocz et al. (1705.05845)

Luna Zagorac | Yale University
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Takeaways

Perturbed Soliton _
Can be modelled with perturbation theory really well!

ULDM Halo with random ICs
Not as simple to model with PT...

..but full simulation box can still be decomposed!

ULDM Halo with symmetric ICs
A cleaner picture In eigenstates!

Conclusions

Soliton formation is quick and evident!
Reveals hierarchical core formation
& the core-halo mass relation!

Luna Zagorac | Yale University
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Roundi"hg off the picture with unequal soliton mergers.

We are modeling baryonic effects with external potentials,
including supernova feedback (time-varying Hernquist potential)
and baryonic disks (Miyamoto-Nagai disk potential).

Luna Zagorac | Yale University
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Questions?
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