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Abstract: Quantum computers are expected to dramatically outperform classical computers for certain computational problems. While there has
been extensive previous work for linear dynamics and discrete models, for more complex realistic problems arising in physical and social science,
engineering, and medicine, the capability of quantum computing is far from well understood. One fundamental challenge is the substantial
difference between the linear dynamics of a system of qubits and real-world systems with continuum, stochastic, and nonlinear behaviors. Utilizing
advanced linear algebra techniques and nonlinear analysis, | attempt to build a bridge between classical and quantum mechanics, understand and
optimize the power of quantum computation, and discover new quantum speedups over classical agorithms with provable guarantees. In thistalk, |
would like to cover quantum algorithms for scientific computational problems, including topics such as linear, nonlinear, and stochastic differential
equations, with applications in areas such as quantum dynamics, biology and epidemiology, fluid dynamics, and finance.
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Quantum Scientific Computation

Quantum computers are expected to address complex realistic problems in
aeronautics, climate, finance, economy, epidemic...

Challenge

From the linear dynamics of a system of qubits to real-world systems with
behaviors of many-body (infinity-body) interaction, nonlinearity, and
stochastic volatility.
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Outline

@ Linear Differential Equations and Quantum Dynamics
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Hamiltonian Simulation

Simulating quantum physics!

Given a description of an s-sparse n x n Hamiltonian system

o d

() = HOWO).

Q;‘ (D)> = |"Z.+'{’i11>s
produce the final state

(1)) = e= |9 (0)) = U - - - UsUr|9p(0)).

Complexity: poly(logn,log(1/€))}.

Jr[Feynman 81]
'J'E[LLoyd 96; Berry et al. 15; Low, Chuang 17]
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Quantum Linear System Problem

Linear system

Given a description of an s-sparse n x n linear system
e =16, (3)

produce a quantum encoding of the solution proportion to & = A~ 1b.

Al 1A

Complexity:  poly(logn,log(1/e))T, k =

T[Harrow, Hassidim, Lloyd 09; Ambainis 12; Childs, Kothari,-Somma 15]
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Quantum Linear ODE Problem

Linear ordinary differential equations (ODEs)

Given a description of an s-sparse n x n linear ODE system

du(t)

dt A)u(t) = £(0), au(0) + fu(T) =7,

produce a quantum encoding of the solution proportion to u(71™),

g =1

A linear ODE system can be approximated by a linear system, for which
we can apply QLSA.
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Previous Quantum Algorithms for Linear ODEs

Quantum linear multistep method?

@ First-order Euler method
u(t + At) ~ u(t) + At(A(H)u(t) + f(t)). (5)

High-order linear multistep methods are known. In general, if
e = O((At)"), then the cost is T/At = Q(1/e'/7).

@ Complexity is poly(logn,1/¢€), even using QLSA with
poly(logn,log(1/¢€)).

"[Berry 14]
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Previous Quantum Algorithms for Linear ODEs

Quantum algorithm by truncated Taylor series!

@ For a time-independent ODE d'zgt)

solution is approximated by

= Au(t) + b, the closed-form

u(t) = exp(At)u(0) + [exp(At) — I]A~ b
N N

i B
~ Z (At') u(0) + Z %tb, (6)

which is a combination of A and b.

@ Complexity is poly(logn.log(1/€)) by QLSA. But it did not cover
time-dependent cases.

'i'[Berry, Childs, Ostrander, Wang 17]
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High-precision Quantum Algorithm for Linear ODEs

Quantum Spectral Methods'

e Efficiently discretize the differential equation:
Spectral Method.

e Efficiently solve the sparse linear system:
Quantum Linear System Algorithm.

@ Bound the global error, condition number, and success probability.

T[Childs, Liu 19]
10 /38
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Spectral Method

We approximate the solution by a truncated Fourier/Chebyshev series

l\r

wi(t) =) cirdi(t), i€ n] (7)

k=0
We then interpolate the ODEs with quadrature nodes {¢;}/Y,

du(t;)
dt

= A(t)u(ty) + f(t:), 1€ [No (8)

to obtain a linear system for coefficients ¢; ;. solved by QLSA.

@ Error exponentially decreases if u(¢) smooth: ¢ = O(1/N™).

@ n(N + 1) x n(N + 1) linear system with sparsity O(N's).

11/38
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High-precision Quantum Algorithms for Linear ODEs

Theorem (quantum spectral method")
Thm 1-2. of [Childs, Liu 19] Let g := max; ||u(t)||/||w(T)||. There is a

quantum algorithm that outputs a normalized state |u(1™)) proportion to u(T™*)
within €, with complexity

@ initial value problems (IVPs): s| A||Tq poly(log(1/e¢)).
@ boundary value problems (BVPs): s||A||*T*q poly(log(1/€)).

An exponential speedup in ¢ for [VPs of time-dependent ODEs; the first
quantum algorithm for BVPs.

T[Childs, Liu 19]
12/38
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Generalization: Linear PDEs

Poisson equation in electrostatics
Viu(z) = f(x), x=€DcCR (9)

@ n spatial grids in each coordinate, giving a n’-dim ODE system.

e Previous quantum algorithms can achieve poly(d, 1/¢)T.

Theorem (quantum spectral method?)

Thm 1-2. of [Childs, Liu, Ostrander 21] There is a quantum algorithm that
outputs a normalized state |u(x)) proportion to u(x) on spatial grids {x} C R?
within e, with complexity d poly(log(1/¢€)).

An exponential speedup in €; the best known scaling in d.

T[Cao et al. 13; Montanaro, Pallister 16]
*[Childs, Liu, Ostrander 21]

13 /38
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Generalization: Real-space Quantum Dynamics

n-particle time-dependent Schrodinger equation

z%\}[!(mz‘) = l|— %Vz - f(a:,t)}\li(m,t), x €D CR. (10)

We denote @(:L‘I‘) as the solution of discretized Hamiltonian system.

@ Applications: chemical dynamics, uniform electron gas.

@ Most previous work only focus on U after Galerkin discretization. The
orbital number N implicitly relies on n, T, €.

@ Previous real-space simulation based on the finite difference can
achieve O(n"13 /€)1,

"[Kivlichan et al. 17]
14 /38
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High-precision Real-space Quantum Simulation

Fourier spectral method gives a more compact real-space Hamiltonian
system than the finite difference.

Theorem (quantum spectral method with interaction picture’)

Thm 3 of [Childs, Leng, Li, Liu, Zhang in prep.] There is a quantum
algorithm that outputs a wave function |V (a,T")) within e, with complexity

n>T poly(log(1/e)).

An exponential speedup in ¢; significant speedups in 77 and 7.

T[Childs, Leng, Li, Liu, Zhang in prep.]

15 /38
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Outline

© Nonlinear Differential Equations
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Nonlinearity is Difficult in Quantum Computing

How to tackle nonlinear differential equations by a quantum computer was
a long-standing open problem.

Proceedings of the
P National Academy of Sciences
of the United States of America

Articles Front Matter News Podcasts Authors

RESEARCH ARTICLE L)

Efficient quantum algorithm for dissipative nonlinear
differential equations

Jin-Peng Liu, @ Herman @ie Kolden, Hari K. Krowi, Nuno F. Loureiro, Konstantina Trivisa, ... New Qllill'ltlll'll ;“g(ll'itll]ﬂ.‘i Fill&ll].\'
essellautorsand affiiagsts Crack Nonlinear Equations

35) e2026805118; https://doi.org/10.1073/pras. 2026805118 By a

. University of lllinois at Urbana-Champalgn, Urbana, IL, and approved |uly 19, 202
ch &, 2021) wo teams found different ways for quantum computers

(received for revi March 6,
O P 35 Ol

17 /38
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Nonlinearity is Difficult in Quantum Computing

Inefficient quantum algorithm

1" 2 = i Uq IL AZL — Ug IL
= > ajluu ~ e A?f ult) (11)

dt R
=1

Consider |¢¢) = > u;|j), and use |&¢)|dr) = >y ujug|jk) to generate
|t AL) i_n one iteration. By the no-cloning theorem, it needs to maintain
totally 297) multiple copies of |¢q) for one o)1,

Quantum lower bound

@ Nonlinear quantum mechanics can imply poly-time solution for
NP-complete and # P problems?.

o For Gross-Pitaevskii equation <(x|v) = g|(z|w)|?(z|e) with |g] > 1,

quantum algorithms have worst-case time complexity 221§,

"[Leyton, Osborne 08]
j;[Abrams, Lloyd 98; Aaronson 05]
§[Chi|ds, Young 16]

18 /38
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Quantum Nonlinear ODE Problem

Quadratic ODEs

du .-
Tfi = Fz"U@Z + Fiu+ E)(t)s 'U-(O) — Uin- (12)
u=[ug,...,un)t €R", u® = [u?, ugus,..., uptn—1,ui]’ € R™

Fs € R”X”‘Q, Fy e R"™" Fy(t) € R™ are s-sparse, I is diagonalizable,
and eigenvalues \; of F} satisfy Re (),,) <. < Re()\) <0.

Inspired by Reynolds number, we define

1 | Fol
= ——— | | ||| F ' 13
|R(3 ()\l)| (|U HH 2H N HuinH ( )

It quantifies nonlinear and inhomogeneous strengths relative to dissipation.

R

19 /38
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Efficient Quantum Algorithm for Nonlinear ODEs

Theorem (efficient quantum algorithm?)

Thm 1. of [Liu et al. 21] Assume R < 1. Let q == ||ui,||/||w(T)||. There is a
quantum algorithm that outputs a normalized state |u(1")) proportion to u(T')
within €, with complexity

5T%g 1
poly(log T, log n,log —). (14)

€ €

Math contribution

We improve the previous best known convergence analysis of Carleman
linearization. Our results have been applied in classical nonlinear control
theories’ and classical computational fluid dynamics$.

M[Liu et al. 21]
j;[Foret, Schilling 21]
§[|tani, Succi 21]

20/ 38
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Carleman Linearization

Considering a 1-dim quadratic ODE ‘;11“ au? + bu + c.

Naive linearization % ~ au(0)u + bu + ¢ doesn’t work in long time.

Embedding and truncation
e Ist equation: %% = qu? + bu + c.

du
dt
@ 2nd equation: th 2ud“ = 2au? + 2bu® + 2cu.

@ Nth equation: H uN = Nbu® + NeuN !
e Give a linear ODE with variables y; ~ v/ for j € [N].

High-dimensional generalization

A system of n-dim nonlinear ODEs is embedded to a system of linear
ODEs with truncation order N. where the dimension is n +n?2 + --- +n?
We rigorously prove the exponential convergence of N when F < 1.

21/38
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Carleman Linearization

We give a linear ODEs ‘(11—? = A(t)y + b(t) with y(0) = iy, by

2 1 1 A
0 A1 4z \ U1 Fo(t)
d | v2 A2 A2 - Y2 0
= e | L= |+ _ (15)
(].IL . e B 41N—1 : :
] AN AN ) 0
UN UN
In AN . AN ) \da
A o ] 7 £ N
where ; ~ u®’ € R™, §in = [tin; -u%‘; g B -u,i@;‘\], and

A;ﬂ—'l =FI® 4+ IQFI® 2 +...+ [®1gFE,. (16)

We apply the Euler method and QLSA to estimate y('I") and measure
y1(1") = u(1") with rigorous complexity analysis.

22/38
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Quantum Lower Bound for Nonlinear ODEs

Theorem (quantum lower bound')

Thm 2. of [Liu et al. 21] Assume R > /2. Then there is an instance of the

quantum quadratic ODE problem such that any quantum algorithm must have
worst-case time complexity exponential in T'.

Basic ideas
@ Hardness of distinguishing nonorthogonal quantum states.

o Butterfly effect: a small initial difference results in a large violation.

Quantum computers cannot efficiently capture chaotic behaviors.

M[Liu et al. 21]

23 /38
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Quantum Lower Bound for Nonlinear ODEs

o Let |¢),|®) be states of a qubit with |(¢)|¢}| =1 — €. Then any
bounded-error protocol for determining whether the state is |¢/) or |¢)
must take time 2(1/¢).

@ We construct a quadratic ODE with R > /2 that evolves |1), | @) to

have a small overlap after evolution time 7" = O(log(1/¢)).

Any quantum algorithm must need 22') time for the quadratic ODE.

1.01

0.8

06

0.4

amplitude

24 /38
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Computational Epidemiology

Susceptible-Exposed-Infectious-Recovered (SEIR) model

dPs P P
- = —A— — "\quR" i = T'vac P_
ar p - Mweet ST AT el
dPg = —APE — rji)E T rvacPS&
dt & {5 ” 17
dpji APj_l_PE PI ( )
dit B | Tlat. Tinf
dPR PR PI
= —A—" +Punels _—_—
dt o T ) jinf

o Realistic parameters of rapid vaccination satisfies 2 < 1T.

@ A high-dimensional generalization can model many interacting cities.

M[Liu et al. 21]

25 /38
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Computational Fluid Dynamics

Forced viscous Burgers equation
O 4+ udpu = vO%u + f, (18)

It is a 1-dim case of Navier-Stokes equation. We apply the central
difference in space to obtain a quadratic ODE.

Numerical results show good convergence of Carleman linearization for
convective flows!.

Forced VBE solution with Re = 20.00, n, = 16, n; = 4000, R = 43.59

0.2

R ,,,’ 8

05 0 o 0.5

M[Liu et al. 21]

26 /38
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Efficient Quantum Algorithm for Nonlinear ODEs

Main results
@ Propose the first poly-time quantum algorithm when R < 1.

@ Establish worst-case complexity exponential in time when R > /2,
giving an almost tight classification of quantum complexity.

@ Show potential quantum applications in epidemic and fluid dynamics.

M[Liu et al. 21]

27 /38
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Outline

© Stochastic Differential Equations
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Stochastic Processes

Stochastic differential equations (SDEs)
dX; = p( Xy, t)dt + o( Xy, t)dWy, (19)

where 1 is a drift, o is a volatility, and W} is a standard Brownian motion.

Monte Carlo simulation

Repeat simulating the SDE and average the outcomes to estimate
expected quantities.

29 /38
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Stochastic Processes in Finance

e Black-Scholes model
dX; = r Xydt + o X, dW;. (20)
@ Local Volatility model
dX; = r Xidt + 0 (X, t) XpdWh. (21)
o "“Greeks" (sensitivity of price of derivatives)

dX; = pu(Xy)dt + o( Xy )dWs,

/ : : (22)
dY; = ' (X)) Yedt + o' (X)) YedW,.

30/38
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Payoff Models in Finance

Given a SDE of stock price {XT}[? compute the expected payoff:
E[P(Xr) | Xo]. (23)
@ European option
P(X7) = e "' max{ Xy — K,0}. (24)

@ Asian option
_ 1
P(Xr) = gt max{T X;dt — K, ()}. (25)

J O

e Digital option (Cash-or-nothing option)

P(Xr) =e " H(Xr — K). (26)

31/38
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Quantum-accelerated Monte Carlo

Lemma (quantum speedup of MCT)

Let A be a (randomized or quantum) algorithm. Let v(.A) be the random variable with
V[v(A)] < 02, then E[v(A)] can be estimated within € in (1) probability with cost O(o /€).

@ It has been applied to estimate the price of options with O(e~! ) for
Black-Scholes model* with access to closed-form solutions.

e However, when we simulate Xy — X by numerical schemes, each

sample takes (3(6'*”), and the computational cost is (_"L)(f*"*”).

T[Monta naro 15]

i[Rebentrost, Gupt and Bromley 18; Stamatopoulos et al. 19]
32/38
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Quantum-accelerated Multilevel Monte Carlo

accuracy. We use > , E[F, — P,_1| = E[PL] to estimate E[P], and denote
C}, Vi, and Nj as cost, variance, and sampling number of P, — P_.

B T P;, are estimators of a random variable P with increasing

MLMC: more coarse-grained samples, fewer fine-grained samples, s.t.
@ variance Z{J:o N;lvl ~ N-1V:

@ cost sz.::o N,C; <« NC.

Cost minimization subject to fixed variance
@ MC: cost = large N x large C.

@ MLMCT: cost = sum of decreasing N; x increasing C}.

"[Giles 08; Giles 15]

33/38
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Quantum-accelerated Multilevel Monte Carlo

MLMC?
The optimum is 6(6_2(25_0 \/V;CZJQ), given by N; = 5(\/173/03).

Furthermore, to cancel out the term (Zf:o \/WC{)Q, we require the
decrease of V; is no slower than the increase of C} (i.e. V;C; = O(1)).

Theorem (QA-MLMCH)

Thm 2. of [An et al. 21] If half of the decrease of V; is no slower than the
increase of C';, then there is a quantum algorithm that estimates E[P| within € in

(1) probability with computational cost O(e™1).

The first quantum speedup for computational cost of general SDEs.

T[Giles 08; Giles 15]
i[An et al. 21]

34/38
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Applications in Payoff Models

Recall that we aim to compute E[P(X7) | Xo] given a SDE {X,}].

We set P =P (X7), and P, = 77()?,”_), where Xm is simulated by a
numerical scheme with n; = O(2') grids on 0, T]. Each simulation of X,
has cost C; = O(2!) and variance V; = O(277).

o If 7> 1, MLMC can achieve computational cost (_3(6*2)7.
o If 5> 2 QA-MLMC can achieve computational cost (3(6‘3")1.

3 relies on the convergence rate of numerical schemes.

We provide high-order stochastic schemes for various option and derivative
pricing models*.

T[Giles 08; Giles 15]

i[An et al. 21]
35/38
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Numerical Results
@ We consider European option and Digital option
P(Xr) = e " max{X7r — K, 0}, (27 )

P(Xr) =5 (1 4+ H(Xr — K)), (28)
with parameters = 0.05,0 = 0.2,7 =1, Xy = 100, K = 100.

o We implement high-order stochastic schemes to test 3, based on 10°
to 10" independent simulations.

Option EM Milstein T51.5 TE52 T53
European | 0.976999 1.962848 | 2.970166 | 3.964626 | 5.958417
Digital 0.473426 | 0.869393 1.452448 1.775679 | 2.957982

Table: numerical estimates of 3 for five schemes: Euler Maruyama(EM) scheme,
Milstein scheme, Taylor-Stratonovich (TS) schemes of strong order 1.5, 2, and 3.

T[An et al. 21]

36 /38
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Summary

Linear differential equations and quantum dynamics

[CMP19, Quantum21] Optimize the performance of quantum algorithms in
terms of ¢, d, n, T, with applications in classical and quantum systems.

Nonlinear differential equations

[PNAS21] Propose the first poly-time quantum algorithm and an almost
tight lower bound, toward applications in epidemic and fluid dynamics.

Stochastic differential equations

|Quantum?21] Establish the quantum speedup for computational cost of
pricing general options and derivations.

37 /38
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Outlook

Scalable quantum many-body simulation

Real-space quantum dynamics, state preparation, postprocessing.

Efficient quantum algorithms for nonlinear dynamics

Nonlinear systems in control, programming, and game theories.

Quantum speedups for randomized computation

Markov chain Monte Carlo, pricing and hedging, portfolio management.
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