Title: Quantum Algorithms for Classical Sampling Problems
Speakers: Dominik Wild

Series. Perimeter Institute Quantum Discussions

Date: December 01, 2021 - 11:00 AM

URL.: https://pirsa.org/21120007

Abstract: Sampling from classical probability distributions is an important task with applications in a wide range of fields, including computational
science, statistical physics, and machine learning. In this seminar, | will present a general strategy of solving sampling problems on a quantum
computer. The entire probability distribution is encoded in a quantum state such that a measurement of the state yields an unbiased sample. | will
discuss the complexity of preparing such states in the context of several toy models, where a polynomial quantum speedup is achieved. The speedup
can be understood in terms of the properties of classical and quantum phase transitions, which establishes a connection between computational
complexity and phases of matter. To conclude, | will comment on the prospects of applying this approach to challenging, real-world tasks.
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Sampling problems

Sampling from random circuits
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F. Arute et al., Nature 574, 505 (2019).
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i H.-S. Zhong et al., Science 370, 1460 (2020).
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Sampling problems

Quantum states naturally encode a sampling problem

) =) V/p(s)e?]s)

Focus on classical Gibbs distributions
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Hard (spin glasses) and important (optimization, machine learning) problems can
be formulated in terms of quantum state preparation.

Pirsa: 21120007 Page 4/26




Markov chain Monte Carlo

() Randomly select spin. i T T @ ‘ T ‘ T i ‘ T
(ii) Flip spin with probability p = min(1, e #2E). IR R @ it

) Repout (I
Markov chain defined in terms of generator M
per1(s’) = ZPt(S)M(37 s')

Detailed balance ensures convergence to Gibbs distribution

6_5HC(S)M(S7 S,) — e_BHC(S/)M(S,’ S)
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Parent Hamiltonian
Hy(B) =1 — e PHe/2 M (B)el e/
° Hq(,B) IS real and symmetric (detailed balance).

e |(f)) is a ground state of H (B) (detailed balance, M is stochastic matrix).

e Gap of Hq(ﬁ) equals difference between largest and second largest
eigenvalue of M (~ 1/mixing time).

F. Verstraete et al., Phys. Rev. Lett. 96, 220601 (2006).
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Quantum sampling algorithm

Defi | |
efine sampling problem Pick Markov
1 —p . —>
) = 2 o—BH:(5) chain M.
Z
Measure in

computational basis to e Adiabatically | o

obtain sample from p(s). prepare |1 (f5))

Compute parent Hamiltonian
Hy(B) = 1 — ™ PH2M ()P e/

with ground state
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|dentify efficient adiabatic pathway
from initial Hamiltonian H, with
simple ground state to o (B)

R. D. Somma, C. D. Batista, G. Ortiz, Phys. Rev. Lett. 99, 030603 (2007).
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Example I. Ising chain

H.=— Z 0707
Single spin flip updates with Glauber dynamics

Hy(B) = =h(B) 3_of = 11(B) }_oioi

2
+ Jz(ﬂ)zgf—lafgfﬂ
i
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Example [: Ising chalin

A
He=— E 0707
i

Single spin flip updates with Glauber dynamics
Hy(B) = =h(B) Y _of = Ji(B) Y _ 0ioin

+ J2(B) Zaf—lgfgfﬁ
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Example [: Ising chalin

J— y A
H,.=— E ;0711
i

Single spin flip updates with Glauber dynamics
Hy(B) = —h(B) Y _of — (B) D oioiis

+J2(5)Zaf—10f‘7§+1

Key result: Trajectories in extended parameter
space can lead to quantum speedup.
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Speedup

e Can sample efficiently at any finite temperature,
using Markov chain or adiabatic state preparation.

e Mixing time of Markov chain at zero temperature
t ~n?limited by diffusion.

e Adiabatic state preparation along Hq(B) achieves
same time complexity.

e Ballistic propagation of domain walls at Ising transition
gives quadratic speedup for paths (iii) and (iv).
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Example [: Ising chalin
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7

Single spin flip updates with Glauber dynamics
Hy(B) = =h(B) Y _of = Ji(B) Y _ 0foin

+J2(B)Zaf—10fgf+1

Key result: Trajectories in extended parameter
space can lead to quantum speedup.
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Sampling from independent sets

][] &

The parent Hamiltonian derived from a single spin-flip
Markov chain describes a generalized PXP model:

Hq(B) = Z P; (e—ﬁni _ 6—6/2033)

eV

Can be implemented on certain graphs using Rydberg
Interactions.
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Recap so far

e Found quantum speedup for classical sampiing problems by adiabatically
preparing a state encoding the entire Gibbs distribution.

e Uncovered connection between computational complexity and quantum
phases.

Cristian Zanoci
(MIT)
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Recap so far

e Found quantum speedup for classical sampling problems by adiabatically
preparing a state encoding the entire Gibbs distribution.

e Uncovered connection between computational complexity and quantum
phases.

e Does this approach work beyond toy models?
o =2 dimensions
o disorder

Cristian Zanoci
(MIT)
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Sampling from independent sets

b [ &

The parent Hamiltonian derived from a single spin-flip
Markov chain describes a generalized PXP model:

Hq(B) = Z P; (6—57% _ 6—6/2033)
eV

Can be implemented on certain graphs using Rydberg
Interactions.
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Ising model in two dimensions

Single spin flips on a hexagonal lattice
Hy(8) = =h(B) ) of = 1i(B) Y _ oio;
' (i7)

—J(B)Y o7 (0305 + 0505 + 0350%) — J3(B) Y _ oios0i0;

—J2//1
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Ising model in two dimensions

Single spin flips on a hexagonal lattice
Hy(8) = =h(B) Y _of — 1(B) ) _oio;
' (i7)

—J(B)) o7 (0305 + 0505 + 050%) — J3(B) Y _ oios050;

—J2//1
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? (17)
—Jao(B) Y of (0305 + 0507 + 030%) — J3(B) Y oio3050%
e Extremely rich phase diagram

e C(Classical ferromagnetic phase
corresponds to boundary between
guantum phases.

e Adiabatic evolution along “thermal
line” is extremely slow. Exponentially
faster paths exist.
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Disordered models (preliminary)

e Few general statements are known about quantum annealing of disordered
systems.

e Disordered, ferromagnetic Ising model in 2D:

H(t)=—) Jyoio: =T(t) Y hio}

(23)
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Disordered models (preliminary)

e Few general statements are known about quantum annealing of disordered
systems.
e Disordered, ferromagnetic Ising model in 2D:
H(t)= =) Jyoio: =T(t) Y hio}
(i) ¢
e Suspect that (classical) simulated annealing requires T ~ exp(L)

L g=In(yn2VL
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Summary and Outlook

e Found guantum speedup for classical sampling problems by adiabatically
preparing a state encoding the entire Gibbs distribution.

e Uncovered connection between computational complexity and quantum
phases.

e Interesting physics for harder problems with potential speedup over
simulated annealing.

e Use hybrid approaches to find good adiabatic paths.
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[ v (17)
—Jao(B) Y of (0305 + 0507 + 030%) — J3(B) Y oio5050%
e Extremely rich phase diagram

e C(Classical ferromagnetic phase
corresponds to boundary between
guantum phases.

e Adiabatic evolution along “thermal
line” is extremely slow. Exponentially
faster paths exist.
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