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Abstract: Conformal field theories (CFTs) are ubiquitous in theoretical physics as fixed points of renormalization, descriptions of critical systems
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Plan

Linnéa Grins Samuel...

Plan of the talk

e Part |I: Background and motivation

e Part Il: Introducing the discretized conformal algebra
e Part Ill: Applications to non-unitary CFT

e Part IV: Results about convergence

e Part V: Results in the loop model and the 6-vertex model

Main references:
LGS, L. Liu, Y. He, J. L. Jacobsen, H. Saleur, arXiv:2007.11539

LGS, J.L. Jacobsen, H. Saleur, arXiv:2010.12819
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Background : ? 4 \

Conformal field theories: field theories invariant under conformal
(angle-preserving) transformations, such as scaling.

o
Why conformal field theories

e Fixed points of renormalization group flow < scale invariance,
which typically extends to conformal invariance.
— we typically expand QFTs around RG fixed points (most
common example: free field theories), since we can more
easily find solutions at these points. Thus CFTs play an
important role in the general understanding of QFTs

e String theory, AdS/CFT, ...

e Critical systems (liquid/gas, ferromagnetic/paramagnetic, ...)
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Magnetic Field
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Background - ? ’ \

Example: Criticality in the Ising model. Spins ﬂ with niacs e

T — 0 Critical point

—— Above T¢
— AtT¢

Cr.,t

M>0 f Below T¢
H 10
' »
| Temperature
M<0 1o~ ‘ 1o £
i Distance, r
Ferromagnetic Paramagnetic n

<U() T ) T B

with =28, =1J4

e Typically, correlation functions decay exponentially

e At critical point, correlation length diverges and we find a
power law. General goal: find with what power a given
correlation function decays.

'y,
46
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Background ? y

Conformal symmetry SR
Invariance under conformal (angle-preserving) transformations.
Metric the same up to local scale factor. In general: translation,
rotation, dilation, special conformal transformation.

In d=2: any holomorphic function gives a conformal map.

2d CFT beginnings: A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov (1984)
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Background _ ?

Conformal mappings powerful tool in many contexts. For instance:
mapping domains when solving Laplace equation with boundary

conditions, ¢ = w—1
w4 1

—_ T

O

Similarly in CFT, donformal symmetry is a powerful tool in the
computation of correlation functions.

Lattice discretizations of field theories is another powerful tool:
they are mathematically well defined, and easy to put on a
computer. Can we combine these tools? Can we discretize the
conformal symmetry?
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Background ? ’ -.\‘.

Symmetry algebra of 2d CFT: the Virasoro algebra

Consider infinitesimal coordinate transformations z — 2 + ez"+1.

Generated by lfn_ — _Zn—*_l%, Wh|Ch Obey [Zyng l-n] — (TTI oS 7’1)!773_4_71.

The Virasoro algebra:

C
\[L772-: Ln] = (“I’TZ — n)Ler-ri‘F E’I’H(TH-Q — 1)5fn+m,0
n+1_0 ™ i

B central term O

5

The algebra generated by —z

o

Central charge c:
e The quantum anomaly (central term) is proportional to c.

e ¢ measures the degrees of freedom of the system. E.g. theory
with n free scalar fields has ¢ = n.

e c appears in the 2-point function of the stress-energy tensor:
Ty o gl 2
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Background _ ? , \

Linnéa Grins Samuel...

b

Asking if we can discretize 2d conformal symmetry means asking:
can we discretize the Virasoro algebra and have it act in
lattice systems?
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7 o

Linnéa Grins Samuel...

Part |l: Introducing the discretized conformal algebra

Pirsa: 21120006 Page 10/46




Pirsa: 21120006

Discretization

Lattice models:

Transf?r matrix T builds the system row by row,

T7

with a transfer matrix

L
T==TT1T17r71171717

We are interested in a type of 2d lattice models where the transfer

matrix in turn built out of local operators

terms of a lattice algebra: the Temperley-Lieb algebra.

Different representations of the Temperley-Lieb algebra will

correspond to different lattice models.

General ref. for the relevant lattice models: “Exactly Solved Models in Statistical Mechanics” by R.J. Baxter.

that are expressed in
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\
Discretization ? A \

Consider variables «, 5 on the edges. The local operator

!
(lf,j

B +ﬁj+1
'y
will be a matrix R; = R(%,_ﬁj);(gf)_#{ﬁjﬂ). We constrain it to be on

the form R; ~ 1 + (const)e; with e; fulfilling the Temperley-Lieb

relations:
G i b _emse
¥

The lattice model will have the property of integrability.

As a diagram algebra, the Temperley-Lieb algebra connects two
rows of N points. Multiplication: stacking diagrams vertically.

- N

o= [T i Qx [%x

3wl m m
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Discretization ; ? ' ‘\.\.

Example 1: Loop model. Weight d per loop. RS?E?
Appears_e.g. when considering boundaries of Sz(,v\
clusters in the Ising model or the more general DO’ZO
()-state Potts model, with applications to per- Dby ANy
colation. x JQ)CLL

Link-state representation: states are half-diagrams, e.g. /' |

Build the lattice configurations row by row. R; ~ 1 + (const)e;,
with:
1 = ) ( €j = bl

T

Varying the loop weight we obtain a family of continuum limit
CFTMswith e< 1.

13 /46
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Discretization ? A \\
‘. 1 ' : { -

Example 2: Ice model. Historically: understanding residual

entropy In ice. _4__}_1_1__
~4—4-1- 0. 1

_1_4—+—r- H '

_.E.l,._r_r_

Generalize to ice-type model, also called 6-vertex model: different
weights for the six types of vertices.

Wi w2 W3 W4 Ws We

Variables 1, | on edges. States are spin states, e.g. T/.
e; will be a particular combination of Pauli matrices that fulfils the
Temperley-Lieb relations.

With different choices of weights w, we obtain again a family of
continuum limit CFT'’s with ¢ < 1, such as the Ising model with
&= 1/2.

Page 14/46



Discretization ?

Linnéa Grins Samuel...

Rephrasing the 2d Euclidean lattice models as (1 + 1)d quantum
spin chains, the latter have Hamiltonians H ~ — ) . ¢;.

e From the 6-vertex model we obtain the familiar

Hxxz ~ ZZJ 1 { 05051t 0; J+1+ A (05054, 1)}

anlsotropy
Pl slele ) g |

In an anyon chain, e.g.

1 x X 58 - X T

1 2 3 L-1
T T

e; assigns an energy gain for having 2; = 1 in |_’(i

X 1—1 '\‘1+I

(corresp. 2d lattice model: the RSOS model)

15 /46
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Discretization ? '

We take the models to be at a critical point, so that the
continuum limit is described by a CFT.

We consider periodic boundary conditions — bulk CFT. Vir x Vir
symmetry (Ln and L-n)-

Goal: find discrete versions of L, on thesform Z)n({ej})
acting in the spin chains.

r Y
10 40
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Discretization ? y
o \

Virasoro generators L, and the stress-energy tensor

In any d > 1 : local stress-energy tensor T"" as conserved current
corresponding to the conformal symmetry.
Ind =28, T.o— - (T va + 1y ) = 0 (traceless) while

(ITI‘I‘ ik IUU 2?11*1;)

0
I
— | =

T(Z) =15z = 1 (11’1’ - Tyy 3is Q'ifry)

Virasoro generators appear as modes of T(z) On the cylinder:

Z€”ML _|_ =

To find discrete £,,({€;}) we look for discrete T({ej}) and define

La({ei}) = 5 Z mINT (e} +

'nO
4
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Discretization ? ( \

Linnéa Grins Samuel...

T ({e;}) from lattice Ward identities

L.P. Kadanoff and H. Ceva (1971), W.M.Koo and H.Saleur(1993)

Ward identity in CFT:

; | - 3 5 -
<[ Loz @1..-ON dedy> =T Z?\: ( + y; ) <CD1(D\>

()Jq Oy;a
straining
Consider Ising model on a square lattice, with PRTY

different couplings in & and y direction:
M= =2 i K2 0(0jk, 0j41k) + Ky 0(ojk, 05 p41) @0 77
Look for lattice operator O giving a lattice Ward identity
<(O _ <O>)Jj1k?1gj2k‘-2> |

. (_Jlﬁ + ki ogl 32(3;2 = ]LZ()/Q) (O j1k1 Tjaks)

18 / 46
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Discretization

We can find j s k‘ in terms of a variable S:
At the critical pomt, Iarge distance behaviour de-

pends only on weighted distance \/j2/5? + S?k?
with S a function of the coupling constants K., K,
in x and y direction at the self-dual point:

5% = tan(©/2)

with © = O(K,(u), K,(u)), and u the spectral
parameter. »
Thus: 5 3 3

5 trer = %55
and derivatives w.r.t. S give in turn derivatives
w.r.t. coupling constants K., K.

fj.k+1) {j+1 .k+1)

(i.k) {i+1.k)

19 / 46
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Discretization ' ? ‘ .\\_
A - / \ ‘ll"\ll

AL
Linnéa Grins Samuel...

In the Hamiltonian limit: the derivatives w.r.t. coupling constants
yield nice expressions in terms of the Temperley-Lieb algebra.

(Recall the operators that govern the interactions, , which
make up the transfer matrix.)

The resulting O is a sum of local operators, O = ij bl gy )
By comparison with the CFT identity we identify .., as the
lattice version of 1., = —T1),. Look for t,, in a similar way.

Recall CFT identity: ([ Tyx ¢1...¢n dody) = = SN (—- _m + y; (,U ) (1. ON)

vs lattice: ((O — (O}))oj k1 Tjoky) = (*}l d;)l

s 1O ; :
+ k1 okq =N c)} +A‘-{N)> <UJ1'["10-J‘2}"2>

2
0/46
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. ; ; 2 \
Discretization _ ? A \
_ Phr ) ""\.

Result: find 7(7) = L(tpe F itsy) with

— 2((_:O*n,st)2([egj_1, ea;] + le2j, e25+1])

For a spin chain with a Temperley-Lieb Hamiltonian, we see that
these correspond to energy density and lattice momentum density:

= by = —(constlic; —es)
H = —(const) Z(ej ol = 2 VI A
‘ p; = —dleonst | |es; el

7=1

and we have T( 5) X hj - P Seealso A. Milsted and G. Vidal, arXiv:1706.01436.

Finally we obtain lattice Z)n as the modes of T .

il {_:u
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Discretization ? -

Linnéa Grins Samuel... ' 1\ 8

Koo-Saleur generators

N
(=) N +inion /N 1 C
L:??-[N] = % z; g o f 5( h;’f = : Dj ) —i_ﬂé”ao
= . ~ ai

(=)
discrete 1'( Z)

take modes

e Virasoro central charge ¢ =1 — 6~z(a_1+1) depends on
Temperley-Lieb loop weight d = 2cosy with v = =& O

r+1
e Fields in the CFT correspond to “scaling states” (low-energy

states) on the lattice. “Scaling limit": energy cutoff — oo
after N — oo
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5 \.
Discretization ? ' \
Ny d- )\ l‘"\,.

Result: find 7(Z) = L(tpe F itsy) with

e = —2(const)(egj a4 — 2600)

= 2(const)*([ezj_1, €2i] + [e25, €2i41])

tl?’y

For a spin chain with a Temperley-Lieb Hamiltonian, we see that
these correspond to energy density and lattice momentum density:

! iy = —leomst{e; —es)

‘H = —(const € — €oo = :
( );( . ) p} — _'Zt((_'ff)'}'_l'z'ﬁf)z{@j, 63;}‘4{]_}

and we have T( 5) X hj = P Seealso A. Milsted and G. Vidal, arXiv:1706.01436.
U

Finally we obtain lattice [E_}n as the modes of T .

Page 23/46



Linnéa Grins Samuel...

W

Part Ill: Applications to non-unitary CFT
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Applications ? ’ \-\

M
Linnéa Grins Samuel...

Non-unitarity CFT

Consider the loop model, with Boltzmann weight d per loop —
non-local problem.

e i
C) L) L (1
) )LL) ) Ll
O J gy
) anunu

Correlation functions related to loops are e.g. probability that two
points are on the same loop.

Goal: rephrase the problem in terms of local weights.
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Applications ) ? ' -_\\
.‘. { ) ‘“".‘Il‘.

Turning the loop model local:

o Can assign a local weight 'Y (e™"") for each right (left) turn
o (#left turns — #right turns) = 0 mod 6 for a closed loop

e Sum over both orientations = recover d = 2 cos 6v, but with
complex local Boltzmann weights

25 / 46
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Applications - ? A

Linnéa Grins Samuel...

The non-unitarity means that the representation theory of the
Virasoro algebra becomes more complicated.

General features of the representation theory:
e [ plays the role of the Hamiltonian.
e Sort state space into highest-weight (lowest-energy)
representations.
e L eigenvalue h (the weight) plays the role of energy
Ly, n # 0 play the role of raising and lowering operators.
V' called primary, the others descendants

h

h+1

h+2

h+3

26 / 46

Pirsa: 21120006 Page 27/46



\
Applications ? ' A

Complication 1:

In non-unitary CFT we cannot identify highest-weight states only
by their weight. Example: The identity (vacuum) has conformal
weights h = h = 0. It is annihilated by B, 1 = 0., giving a
differential equation for any correlator that involves it. In
non-unitary theory: may have another state with i = h = 0 that is
not annihilated by L_1, so that the differential equation does not

apply.
h=0 h=0
T jt g J
=1 =1

7 /46
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: ¥
Applications ? ' \

Linnéa Grins Samuel...

More broadly, for specific values of the weight h of the the
highest-weight state there will be relations between level n

descendant states. y

b iF \

\ i

.
/

o
Lg—ll L_oV \ Level 2
off |
p ! \

From a relation between L" V' and other descendants at level n
we get an n-th order differential equation for correlation functions
involving V. In non-unitary CFT we must check if such equations
still describe all correlation functions involving states of weight h.

(In CFT parlance: we check if null states are zero.)
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Applications ? '

Complication 2:

In non-unitary CFT we are sometimes (but not always!) unable to
fully diagonalize Lg. Put in Jordan normal form — get Jordan
blocks with fields that mix under the action of L.

}11 0

When L is diagonalizable: Ly = (O h
2

O

) in a basis of Vp, V5.
Correlation functions:

(V1(0)V1(2)) ~ 22%1 (V1(0)Va(2)) = 0 and (V5(0)Va(2)) ~ %

z

)0 /46
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Applications ? ’ \-‘,‘

Linnéa Grins Samuel...

Jordan blocks will lead to correlation functions that contain
logarithms (this is allowed by scale invariance).

S |

Jordan block of rank 2: Ly = (O h

) In a basis of V4, V5

Vl —¢ VQ
L() I

Correlation functions:

(Vi(0)Vi(2)) = 0, (Vi(0)Va(2)) ~ 2 and (Va(0)Va(2)) ~ 2182,

Logarithmic CFT beginnings: V. Gurarie (1993).

Example of lattice determination of 3: J. Dubail, J. L. Jacobsen, Hubert Saleur, arXiv:1001.1151

) / 46

Page 31/46



Pirsa: 21120006

: : : \
Applications ) ? ' A

We can use the Koo-Saleur generators to distinguish between

states in complication 1, and find out if Ly mixes states in
complication 2.

e Find eigenstates of H[/N]| at system size N that will
correspond to the desired states at V — oo. Note:
N

(=) N 1 { N &
Lo|N| = — —(hni ) — =—(H=* —
o[V} 271'32:12 P E D) Ty = o HEP)F o
The conformal weights are thus directly related to energy and

lattice momentum.

e Act with £, [N], n # 0 for increasingly large N to form
matrix elements such as (V4|L,,|Vp), then extrapolate to
N — oo to deduce the action of the corresponding
raising /lowering operator L,,.

To reach large N: Bethe ansatz, Quantum Inverse Scattering
Method.

> 1 q¢
| 40
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Applications ? ' W\

Linnéa Griins Samuel.. a5 | i

@

But first...
Before using the Koo-Saleur generators we need to check: do they
in fact converge to the Virasoro generators?

) /46
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Convergence ? » \

Linnéa Grins Samuel...

Convergence at N —
o

L,[N] —— L,

Looking at matrix elements of L,[N] i.e. we can show at most
weak convergence. But do we have weak convergence in general?

34 / 46
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Convergence ? '

0

Artefacts of the lattice discretization and the scaling limit

For a system of finite size N we cannot accommodate arbitrarily
large lattice momenta. Conversely, high energy states for a
finite-sized lattice will not correspond to states in the continuum
theory. For any given N we want to restrict to low energy states.
(“Scaling states”.) This restriction will crucially affect products of
L., where we need to use a double-limit procedure called the
scaling limit.
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$ \
Convergence ? 4 A
. , ‘.I""II

Example: Measuring the central charge ¢ through (17T o [t

T'=L_51 and (1|LgL_2|1) = ¢/2. The state |1) is a scaling
state, however
#states
(1| L2L 1) = > (1] Lafvg)) (v | L—2l1)
j=1
includes intermediate unwanted high-energy states.

On their own, unwanted matrix elements (v(;)|£_2|1) converge to
zero. However, # high energy states grows rapidly and the total
unwanted contribution is finite. We consider instead

cutoff

> (1L

j=1

V() V) £—2(1)

We can only send cutoff to oo after N — oo.
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Convergence - ? A

(L|£-2£L5|1) (1|£_,£;|1), relative valuejses 2
04 ey e

- | -'-4*#1"}*'#'{%‘&;;
el 4#-!**0**#*##

0.0 / .

+4

p P
/ No cutoff Cutoff Conj 090{ , + *+*°
—0.2 1 f/ N=10 N=10
] .+ N=14 . N=14
oa / + N=18 - N=18 0.85
1 4 £ N=22 . N=22
¥ + extr * extr
-0.6 - . . : : : ‘ : 0.80 - : ‘ : : :
050 075 100 125 150 175 240 050 0.75 100 125 1.50
x/n xn
cutoff :
Convergence of > =71 (1| La|vg ) (v )| L—2|1) — ¢/2.

Effect of no cutoff is the largest at large ¢, disappears at
x = 1,2,3. Same effect for the 6-vertex, loop, and RSOS models
(at @ integer for RSOS). Same effect with modified version
suggested by Shokrian-Zini and Wang in arXiv:1706.08497.
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Convergence i A \

Convergence at N — o¢

Lo[N] —— L,

Looking at matrix elements of L£,,[N] i.e. we can show at most
weak convergence. But do we have weak convergence in general?

Interestingly, even without the cutoff in the double-limit,
results would be “almost right”...

Page 38/46
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Convergence ) ?

LR,

...with no cutoff, commutators only have central term wr@Si

Virasoro: [Ly,, Lyl = (m — n)Lmyn + %m(m2 — 1)dn+m.0

Finding expectation values of Temperley-Lieb operators
= predicting modified relation without cutoff:

[Lm: Lfn.] — (771- — nf)L-Tn.+72_ .S %(mgc* — *m,(:')dm+n:0

: e i I :
« 24~3 1 48~3 = _ o0 42n_sinh(r—y)t
L= 72 sin?~y £l w2 Iy with In = . —oot sinh ¢ cosh vt It.

¢ = c* only holds for x = 1,2,3 (c:l—Gmﬁvzﬁ)

(1|[L2, L_5]|1) for XXZ spin chains, plotting values divided by ¢/2:

L0101 r*  With cutoff
4 )
! —— Conjecture
1.005 et - o
o 4 ¢  Without cutoff
1.000 .—3—3—;—3—'—0—3—o—~—-—-—-~—-—-—. i Modified conjecture
0.995 |
0.5 1.0 1.5 2.0
X/

39 /46
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Part V: Results about the loop model and the 6-vertex model

W
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6-vertex and loop i '

Complication 1: Check if only the identity has h = h =0
e Act with £_1[N] on state with h = h = 0 (weights of the

identity state) and project on state with h = 1,h = 0.
e Extrapolate (h =1|L_1|h =0) to N — oc.

0.41{%_

a _\N“H
Possible outcomes: e T e
o . * Right diagram
=1 =1 0.2 e i
e g f e o J 0.1
n=1 h=1 0.0 (%

0.000 0.025 0.050 0.075 0.100
1/N

Loop model: only left diagram is present.
b-vertex model: both are present.

Recalling L = 9., the applicability of 9.(V(2) []; Vi) = 0
depends only on V' having weights h = h = 0 in the loop model,
but not in the 6-vertex model.

41 / 46
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6-vertex and loop

Complication 2: Check if Ly will mix states or not.

Loop model:
Lo has rank-2 Jordan blocks. In a basis of V;, V5

. h 1
we find Lo = (O )
(Vi(0)Vi(2)) = 0, (Vi(0)Va(2)) ~ Zx
and (V5(0)Va(2)) ~ & 1;)5}52)-

We say that it is a logarithmic CFT.

) and e expect

b-vertex model:
L is diagonalizable. For a state LoV = AV
we expect (V(0)V(2)) ~ ==
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\
6-vertex and loop ; ’ \
. ; (/ i ll‘

Relevance in bootstrap of ()-state Potts and O(n) models:

The results from the loop representation show that we have
logarithmic representations of the Virasoro algebra. We must
therefore consider logarithmic conformal blocks in the crossing

symmetry equation

2 3
Z C125Cs34 = = Z C23:Can ¢
AseS 1 A AeS

See recent paper: O

LGS, R. Nivesvivat; J. L. Jacobsen, S. Ribault, H. Saleur,
arXiv:2111.01106
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Summary

Koo-Saleur generators: discretization of the Virasoro
generators. Write £,,[N] as function of generators of the
lattice Temperley-Lieb algebra

Application: non-unitary CFT, where the representation
the?ry of the conformal algebra is more complicated

“Scaling-weak” convergence: need double-limit procedure
with an energy cutoff inside products of £,,[N], or the central
term comes out wrong in commutators

Both the loop model and the 6-vertex model are non-unitary,
yet behave differently. In loop model: L has Jordan blocks,

logarithmic CFT. In 6-vertex model: find state with

h = h = 0 that is not the identity (vacuum). (And similarly

for other states that have some specific values of h,h).
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I
1
at i
Future directions _ / >
X1 . \'2
T, \5/
Rational values of ¢, where the modules *514-*'46} s %3 4
e

Ys-\T 5 X5, X7

are more complicated. Example at ¢ = 0:

RSOS models, anyon chains. Implementation of Koo—SaIeur
generators in A,, type RSOS models currently under-way.

Application: identification of topological defects. Simple
le: Y
S L - JHA

TS T
Y is in the the center of Temperley-Lieb, so [£,[N],Y] =0,
meaning that it is topological (can be “pulled across” the
stress-energy tensor) already on the lattice.
Better understanding of the results about convergence and
the appearance of ¢*.

-_1 "7; _".‘. E‘_';
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Questions
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