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Abstract: Trotter-Suzuki formula is a practical and efficient algorithm for Hamiltonian simulation. It has been widely used in quantum chemistry,
guantum field theory and condensed matter physics. Usualy, its error is quantified by the operator norm distance between the ideal evolution
operator and the digital evolution operator. However, recently more and more papers discovered that, even in large Trotter step region, the quantity
of interest can still be accurately simulated. These robustness phenomena imply a different approach of analyzing Trotter-Suzuki formulas. In our
previous paper, by analyzing the spectral analysis of the effective Hamiltonian, we successfully established refined estimations of digital errors, and
thus improved the circuit complexity of quantum phase estimation and digital adiabatic simulation.
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@ Preliminaries about product formula

e Effective Hamiltonian method

@ Application in quantum phase estimation

@ Time-dependent Hamiltonian (digital adiabatic simulation)
@ Discrete adiabatic process

@ Robustness of local obseravable simulation
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Preliminaries

Quantum simulation

@ The task of quantum simulation is to
construct the time evolution operator in
terms of local unitary gates @

dU(t)

= —iHU(t) = U(t) = et

@ Lots of applications : quantum chemistry,
condensed-matter physics, high energy
physics

@ Different algorithms : product formulas,
linear combination of unitaries, quantum
signal processing
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Preliminaries

Preliminaries

@ In product formula method, we replace each short time evolution operator U(dt) with an
approximation Uyo(dt)

)
U(t) = UGt = Upo(ot)E, t= Lot
L is termed as Trotter number, ot is a Trotter step
@ For a general normalized Hamiltonian H = ZJ,'V:1 hi, ||hj|| <1, we separate the local terms

into several layers {H,}, then the 1st order product formula gives

r

Urro(9t) = H g~ thot

=1

@ There is a recursive way to write high order product formulas. The higher the order, the
more accurate Uy, (0t) is
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Preliminaries

Preliminaries

@ The digital error of product formula method is quantified by the operator norm distance
between U(t) and Uso(dt)t

M|x)||2
A = || Upyo(6)E = U], ||M :max—H
H tO( ) ()H H H ]x);éO |H§T‘D>H2

@ Properties of operator norm
[A[D) [ < (Al [TUAI = [|All, - [[A+ Bl < [|A]l + |B]
@ The worst case vector norm distance is upper bounded by the operator norm distance

| Ui (58) 1) = U(B)] ) [l2 < [|Uro(81)" — U(2))]
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Preliminaries

Preliminaries

@ The overall norm distance is related to that of a single step

| Uero(68)" — U(1)]] < L[| Usio(5t) — U(01)]
O
@ For 1st order product formula, it has been proved that [Childs et al., 21]

|Uiro(0t) — U(0t)]| < %Z | > Hy, Hylllor?

=5

For 2-local Hamiltonian, the prefactor is proportional to N

@ Based on €, t, H, we determine the circuit depth L

e = O(Lot?), L= O(t?*/e)
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Preliminaries

Preliminaries

" e—ihlét e—ihgét
Simulation time t o—ih2dt o~ ihadt
Size of Trotter step ot
Trotter number L o—ihadt o—ihsdt
Number of sites N
Expected error € p—ihzdt (—ihadt
[Uno(68)" = U(1)| A
e—ihlét e—ihgét
Table: Notations | |

Figure: Quantum circuit of 1st order formula
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Time-independent Hamiltonian

Fidelity error

@ Instead of analyzing the norm distance error A, we separate the error into fidelity error f
and phase error 0

Urro(68) [90) = V1 — femU(ﬂ\?é) +VEU(t)[p)

o With A < 1/4/2,
f+60%/4 < A

o Theoretically, it's possible that v/ can be much smaller than A, as the digital error can
be dominated by the phase error 6

@ A trivial example is when the initial state is an eigenstate of H
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Time-independent Hamiltonian

Effective Hamiltonian method

@ Each U (dt) can be regarded as an exact evolution under effective Hamiltonian

~

H = ilog(Uyo(0t))/0t,  Uso(dt)t = e~iH

with spectral decomposition H = ), Egﬁg
@ Use BCH formula, the leading term of His

H=H— é > [Hy, )6t + O(5t%)

Y<n

e With eigenstate of H as initial state, the fidelity error is only relevant to the distance
between eigenbasis

VI = 1= [ UT(6) Usno(SE) i) < 211 — Pyl

and it's irrelevant to the simulation time t
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Time-independent Hamiltonian

Effective Hamiltonian method

@ Introduce _N
D:=) e (B=E)tp, vy 5p,ST =P,

D encodes the deviation in energy levels, S encodes the deviation in eigenbasis
Unro(6t)t = SDU(t) ST
@ Then A can be quantified in terms of S —@{ and D — |

A = ||SDU(t)ST — U(t)H

SDU(t)S" — DU(t)| + || DU(t) — U(t)|
= ||[S, DU()]I| + ||1D — ]|

< 2min{||S — /||, [|DU(t) = I||} + ||D — /]
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Time-independent Hamiltonian

Effective Hamiltonian method

@ After simplification N N
A< 2\/§m£axHPg — Pyl| + m?x\Eg — Ey|t

The first term is independent of t, the second term increases linearly w{%h it

@ Using perturbation theory and the expression of H, we obtain
|Pe— Pell < ||H = HIl/,  |Ec— Ell < |H = H|
o |H — H||t is also a common estimation of Trotter error

le™ ™Mt — =Mt < ||H — H||t

o The improvement originates in |E; — E;|. Because of the specialty of H — H, the

perturbation in energy can be much smaller than the previous estimation
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Time-independent Hamiltonian

Improvement in |E — E|

)
@ In perturbation theory, 5E€(1) = (1| V'|¢p); if the leading term vanishes, the perturbation
in energy will have order at most O(]|V|?)

@ |f the leading perturbation term of H is off-diagonal in the eigenbasis of H
Ve, (e|H — Hl) = O(61%),

then the Trotter error in energy is reduced from O(dt) to O(5t?)

- 1
‘Eg — Eg‘ =0 (5t2 max{l, —})
A¢

@ We find several general classes of Hamiltonian that satisfies this condition
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Time-independent Hamiltonian

Improvement in |E — E|

@ Recall that the leading perturbation in H—His

g iot
H—H=—— > [Hy, Hy] + O(6t%)

Y<n

@ Two-layer case, H = H4 + Hg,

(Ye|[Ha, Hel|¥e) = <W\[/}’7 Hg]|ye) =0

@ Real Hamiltonian, real symmetric matrix has real vectors as eigenstates

<W‘HnHﬂ¢£> — <W\H’VH77‘W>
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Time-independent Hamiltonian

Comparison between 1st and 2nd order product formulas

@ The 1st and 2nd order product formulas can share similar asymptotic scalings under
certain conditions [Tran et.al, 2020]

@ 2nd order product formula has expression
1 -
Ut(r20) 5t H o~ iH,0t/2 H e—ég/fy&/z

It has been proved that HUt(fo)(cSt)L — U(t)|| = O(Lét3)
, we obtain a similar result [Yi, Crosson, 21]

@ With the improvement in \Eg —

| Uno(52)E — U(t)]| = O(a- 6t) + O(b - L5t3)

-ﬁi“i‘il- November 29, 2021

Pirsa: 21110047 Page 15/40




Time-independent Hamiltonian

Application in quantum phase estimation
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Figure: Circuit of Quantum Phase Estimation
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Time-independent Hamiltonian

Application in quantum phase estimation

o Write the effective initial state of the Trotterized unitary operator as i)

) = /T — pl9)+ /Bl

@ The success rate should be decreased by a factor of (1 — p), which is negligible

@ To make sure the phase error is smaller than precision &, there should be a restriction on
the size of Trotter step N
|E — Elto < 2m¢

@ Our method also applies to other phase estimation algorithms as well [Russo et.al, 20], as
long as Trotterized unitary operator is used
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Time-independent Hamiltonian

Application in quantum phase estimation

@ [Yi, Crosson, 21] Suppose there's a quantum circuit that performs quantum phase
estimation using 1st order Trotter formula, the size of the register is n thus the precision
is £ = 27", The unitary operator is U = e~"H% where H is supported on N qubits and
satisfies one of the conditions that reduces Trotter error in energy, to guarantee
|E — E|ty < 27&, we require

0

5t0(%\/t§min{l,)\}), L=O|N %gmax{,é}

@ Here L represents the circuit depth of a single U
e Without the improvement in |E — E

N p.
o[
3
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Time-independent Hamiltonian

Summary

Uno(58)L = @1t = SDU()ST
A< 2\\5 — ||+ ||D -1

@ Because of the specialty of the perturbation part H — H, the deviation in energy levels

can be a lot smaller than the estimation |E, — E/| < |H — H||

@ Using this framework, we obtain improvements in the error estimation of 1st order

product formula and the circuit depth of quantum phase estimation

@ Q : However, the inverse dependence on A doesn’t show up in other analysis, which might

be eliminated by further analysis
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Time-dependent Hamiltonian

Time-dependent quantum simulation

@ For time-dependent Hamiltonian [Poulin et.al, 11],

! ti+ot T
= H expr —i/ Z Hy(7)dt
= b y=1
LT tj+ot
= H H expr —1/ H,(r)dr | Trotter splitting, ¢’ = O(@dtz)
J= 17 il

= H H exp (—iH,(t; +dt/2) - 6t)  Averaged approximation, ¢’ = O(Ldt?)
g=la=l
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Time-dependent Hamiltonian

Digital adiabatic simulation

@ The simulation of adiabatic process is an important step in adiabatic quantum computing

@ Solution to computational problems can be encoded in the ground state of a Hamiltonian

He =Y 322~ Y
jk k
)
e.g. MAX-CUT, spin glass
@ Ground state of a complicated Hamiltonian can be generated by adiabatic evolution

e Adiabatic theorem (informal): set the ground state of initial Hamiltonian as the initial
state, if the Hamiltonian evolves with time slowly enough, the evolved state will
approximately be the ground state of the Hamiltonian at the corresponding time
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Time-dependent Hamiltonian

Digital adiabatic simulation

o Linear adiabatic path : H(t) = (1 — L)H; + LHf, t € [0, T], eg.

Y
Hi= =%, o) ="
3

@ T quantifies how slow the evolution is, the adiabatic limit is

A(T) = expr (—/'/OT /:l(’r)d7'>
Aim A(T)[0;) = |0f)
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Time-dependent Hamiltonian

Digital adiabatic simulation

e Simplify the previous expression with a dimensionless variable s =t/ T

H(s) = H(Ts) = (1 — s)H; + sHs
i
A(T) = expr (—iT/O H(s)ds)

e Adiabatic theorem (formal) [Jensen et al., 07]: the inaccuracy of adiabatic evolution is
quantified by the fidelity distance

cadb = /1 — |04 A(T)[0;)2

max ||H'(s)]|
T min A(s)? )
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Time-dependent Hamiltonian

Perform DAS using product formula

@ Step 1, discretization

L
Ay = H Ui, U= e_iHj5t7 Sj =j/L . .
iy o Evolution time T
+ Trotter number L
ot = e Hi = (1 —s;) Hi + sjHr Size of Trotter step ot
|deal adiabatic operator A(T)
o Step 2, Trotter splitting Discrete adiabatic operator Ag

Trotterized adiabatic operator Aio

E
Atro = H Uj
Jj=0

U_] _ e—i(l—sj)H;5te—i.'5ij5t
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Time-dependent Hamiltonian

Errors in DAS

@ The error estimated by adiabatic theorem is

cads = /1= [{0¢|A(T)|0}[2 = G(T, H) = O (|Tl_§2|>

@ The error originated from prodcut formula is

O

T2
oo = /1~ [OIAN(T)Acel0)F < A(T) ~ Aol = O (max (7))

9

@ If we only focus on the parameter scaling of L, T, then

1 i
ctor = /1 — 1(07] Awol0) < qaty + tr0 = O (?) L0 (T)
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Time-dependent Hamiltonian

Robustness of DAS

a)
1.0 A
€tot
0.8 - ® S
x €tro

O

0.61
0.41
0.21

/’-.--...—

@
0.0+

0.5 1.0 15 2.0
T/L T/L

Figure: Total error of DAS. H; = — ZJ/'V:1 X, Hf = — ZJ/-Vzl(O.SZJ-ZJ-H + Z;) with OBC. N =8. L =100
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Time-dependent Hamiltonian

Errors in DAS

@ The error estimated by adiabatic theorem is

cad = /1= [{0¢|A(T)|0}[2 = G(T, H) = O (|Tl_§2|>

@ The error originated from prodcut formula is

T2
oo = /1~ [OJAN(T)Acel0)F < A(T) ~ Aol = O (max (7))
@ bl

@ If we only focus on the parameter scaling of L, T, then

1 Y
ctor = /1 — 1(07] Awol0) < gty + tro = O (?) Lo (T)
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Time-dependent Hamiltonian

Robustness of DAS

@ The ¢, calculated here is the fidelity error instead of operator norm error. We didn't see
the scaling €0 = O(T?/L). The previous estimation is not accurate

. . 1 .
@ The inverse dependence of T remains true for large Trotter steps, which we call it as the
robustness of DAS

@ The meaning is, in large Trotter step region, Ay, already deviates a lot from A(T), while
the quantity of interest is still accurate; this is because for some specific quantum
simulation task, we only need part of the information in the unitary operators

@ We can use the effective Hamiltonian argument to obtain a new upper bound
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Time-dependent Hamiltonian

Effective adiabatic path
@ The Trotterized evolution operator Airo is an exact adiabatic evolution under
H(s,dt) = ilog({/(s))/dt

~ 1 ~
A(T) = expr (—iT/ H(s,5t)ds) = Atro
0

o If ﬁ(s,ét) satisfies the boundary condition

~ ~

H(0,6t) = H;, H(1,46t) = Hy

It's natural to apply adiabatic theorem on the new path as another upper bound

it — O W 1 <of2\’<T>o,->2) — O(G(T. A))
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Time-dependent Hamiltonian

Discrete adiabatic process
o

e Consider a discrete adiabatic evolution operator of a general adiabatic path H(s)
Ad . H U UJ - e—iH(Sj)T/L

@ [ he evolved state can be written as

0

@ Later we will see that 6,4 and ¢, have very different properties
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Time-dependent Hamiltonian

Discrete adiabatic process

@ Outline of proof [Yi, 21]

0¢|Ag|0;) = (0f| [ [ e~ =) T/L10;)
{ \@|> \H 07)

_ e—f9A<of\ [[e -8/, ga= 13 Eo(s)

= e %407 [ [ DA D]10:)
4

— e~ 04(0¢| D, D{|0;), r_/\LH 1 1DiA)

= e %Al
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Time-dependent Hamiltonian

Discrete adiabatic process

@ In the matrix form

D
1 — €4y

[ — €1 = = €§db:Z‘€€‘2

€ o o ®

@ Perform linear expansion of [

r_H/\ +Z [IN | L0 =0 [ TIN |+

j=0 \k>j k<j

@ It's required that the phases of the eigenbasis of H(s) are chosen to let the transition
matrix between them DJTHDJ- closest to identity
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Time-dependent Hamiltonian

Discrete adiabatic process

@ Outline of proof [Yi, 21]

(0¢|A4]0;) = ¢ of\He ($)T/L)0,)

- e s F
E— e_19A<Of‘ 11 e_’(g(sj) EO( J))T/L‘OI>’ QA — T Z EO(S_/)

= e %407 T ] DA D] 107)
vl

— e~ 04(0¢| D, T D{|0;), r_/\LH DA

= e "%l
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Time-dependent Hamiltonian

Discrete adiabatic process

@ In the matrix form

/ 2
1 —€z4p

[ — €1 = = €§db:Z‘€€‘2

62 . . . e>0
@ Perform linear expansion of [
L i
r=Tn+ [IA | (Ol =0 [ TIA )+
j=0 j=0 \k>j k<j

@ It's required that the %hases of the eigenbasis of H(s) are chosen to let the transition
matrix between them DJTHDJ- closest to identity
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Time-dependent Hamiltonian

Discrete adiabatic process

@ Using the linear expansion, we obtain the undesired transition amplitudes

- (0(s;) \H’

S T
)I0Gs;); exp _’TZ)\E(Sk) , M=E—E

i
L j=0 J) k<j

@ Consider its continuous limit

/1 (¢(s)|H'(s)[0(s))
0 Ae(s)

@ Use Riemann-Lebesgue lemma (integration by part)

1-o(453)
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Time-dependent Hamiltonian

Robustness of discrete Riemann-Lebesgue lemma

@ Riemann-Lebesgue lemma

o | | o If6)
| — /O f(s) exp[—iTg(s)lds, g'(s) >0, ’—O(W)

e Consider a specific example with f(s) =1,g(s) =s

1 — i -
. I — ¥
/_/ —ITSdS_ € “‘: ‘Sln( /)‘

iT T/2
Z e—/kT/L _ E —e ! ‘/ ‘ _ ‘SIH(T/2)‘
L1— e iT/L° L|sin(T/2L)|
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Time-dependent Hamiltonian

@ When 0 < T/L < 3.78, we have:

T o (T) - T
I T T
The impact of discretization is merely

a factor of 2 o
@ When T/L —2m, Iy — 1

@ Essentially, this principle accounts for
the robustness of DAS

Robustness of discrete Riemann-Lebesgue lemma

=
o &

Amplitude
=
i

o
o

2 I

Denominator

o

s

[§]

— 2T
————— 1/L|sin(T/2L)|
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Time-dependent Hamiltonian

Robustness of discrete Riemann-Lebesgue lemma

@ Riemann-Lebesgue lemma

o | | _ o If6)
- /O f(s) exp[—iTg(s)lds, g'(s) >0, ’—O(W)

o Consider a specific example with f(s)%=1,g(s) = s

1 — v -
. I— T2
/_/ —ITSdS_ € “‘: ‘Sln( /)‘

iT 12
Z e—/kT/L _ E —e ! ‘/ ‘ _ ‘SIH(T/2)‘
L1— e iT/L° L|sin(T/2L)|
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Time-dependent Hamiltonian

Phase error in discrete adiabatic process

@ Recall that
(40
@ The transition rate to higher energy levels €, allows for large T /L, but the phase error
doesn't

1
1 3 ,
00a=T /0 Eo(s)ds — 7 Z Eo(sj)| = O (T max Eo(s)>
J O
@ Accordingly, since €/ allows large T /L while 64 doesn't, the operator norm distance
|A — Ag|| can be much larger than the fidelity error
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Time-dependent Hamiltonian

Summary

@ Numerically, we found the previous upper bound of €t in DAS overestimates the digital
error

| . : : : : : , -
@ The DAS is a discrete adiabatic process under the effective adiabatic path H(s, dt); so we
can apply adiabatic theorem on it as a new estimation

e Analytically, we prove that a large class of discrete adiabatic processes allow large T /L

@ As T /L gets larger, eventually the spectral gap of ﬁ(s,(St) closes, which results in the
breakdown of the robustness, this explains why €.t increases sharply after the critical
point. This also means the robustness can break down easily when A(s) is very small

e Q : why does (#(s)|m(s)) decrease with |Ey(s) — Emn(s)|?
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