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Abstract: Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an application of entropic methods of inference. In
ED the dynamics of the probability distribution is driven by entropy subject to constraints that are codified into a quantity later identified as the
phase of the wave function. The challenge is to specify how those constraints are themselves updated.

The important ingredients are two: the cotangent bundle associated to the probability simplex inherits (1) a natural symplectic structure from ED,
and (2) anatural metric structure from information geometry.

The requirement that the dynamics preserves both the symplectic structure (a Hamilton flow) and the metric structure (a Killing flow) leads to a
Hamiltonian dynamics of probabilities in which the linearity of the Schrédinger equation, the emergence of a complex structure, Hilbert spaces, and
the Born rule, are derived rather than postul ated.
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The subject: Quantum mechanics.

The goal:  To derive the mathematical formalism.

In the traditional approach the Hilbert space comes first.

Why probabilities? “Quantum” probabilities? Born rule?
Linear unitary evolution vs. wave function collapse?
What is real? Ontic vs. egistemio?

An alternative approach: probability comes first.

Why wave functions? Why complex numbers?
Why a linear unitary evolution? Why Hilbert spaces?

5

Page 7/37



1. Kinematics
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Ontological clarity: What is real, ontic?
What is epistemic?

Discrete ontic microstates: j=1,...,n
e.g., an n-sided “quantum” die

Epistemic probabilities: p(j)=p’ Bayesian,...
but not personalistic,
and not “quantum” probabilities.

Our goal: to study curvkes on the (n—1)-dimensional simplex,

S={plp’20;3 o' =1

... but this is only a kinematical prelude to dynamics.
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Some geometry

dp’

S = e-configuration space 7S = e-phase space
T'S = Tangent bundle = Cotangent bundle
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Some notation

Point: X =(p,0) X/ =(X”,X2j)=(ﬂf>¢j)

3 0 ax®  (dp’/dr
: _ i g — &
Vector: V=V P = ( i,/ er
~ oF ~ . OF ~ . oF -_ .
Gradient: VF(X)=—Vp’'+—V¢’' = -VX*%
radien (X) o P oF ¢ poy

An important technicality: Normalization

Embed S into the space S™ of unnormalized probabilities,

S*={p|p’ 20}
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Symplectic geometry of 1 v S

Symplectic form: Q=Vp’ ® @géj - @gﬁj ®Vp’

| 0 I
= ajr 1Bk - >
QW7,0)=Q,, VU Qo= [—1 o}b s

Vector fields P_I(X)*such that £.Q=0 are called

Hamiltonian flows.

10
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Hamiltonian flows:

Poincare’s lemma: there exists a scalar function H(.X)
such that

Q)(H,+)=VH(-)

= ang .l s Hamilton’s equations !

Furthermore... QW ,U)={,U} Poisson brackets !

dF (X)
drt

and even more... —{(F.H}

11
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The normalization constraint

Pl=>" P N=0

N(X) generates a Hamiltonian flow N (X)

PV=p(0)  §,0)=4,0)+v Rays!

o~

- = dH
We want d—Nz{N_,H}=0 butthen {H,N}=0=—
dr dv

=3 i generates a “‘gauge” symmetry !

—  H must be “‘gauge” invariant.

i
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The information geometry of s

S™is an n-dim statistical manifold:
B(|p)

502 =g, 000" with g, =A(pp+ 207 S

For the 2n-dim TS :

Flow-reversal symmetry: =0

S
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Information geometry of e-phase space 7' S

Consider two neighboring points on the simplex, |,0| =1
(pjnéj) and (pj+5pjn ¢j+5¢j)

then S0FWV)=g w0 5p" + g (8, +v)(64, +V)

The distance between two neighboring rays is

~ D - xtn D E B(l) % i) 2pj ~ ~ 2
05 =mmwt (V) = ~(op’ ) + (o . —{0r))”
V ;{2& sy ")

which is the Fubini-Study metric !
14
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Since the particular embedding space 7" S* does not
matter, choose

Alp)=0 and B(p))=1

which mak

L i TR T e
S0 = Z{ij 00’ ) +2p’ (b;éj)'}: G oo X e

j=1

Furthermore... ;
% aj 0 _2 %
=6 & {er Pk = S o = : % 04
A g AR b = Ol

... and we have a complex structure !
15
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For QM we must refine the choice of cotangent space

(‘3 Introduce complex coordinates
SQ W, = ,o"?'e‘ﬁ and .iw ip”e_?

Hj "[/f Uy I 0 ~
CF Sl e o o

¢;is equivalentto ¢ + 27

The cotangent spaces are “hypercubes” of edge 27
with opposite faces identified.
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Hamilton-Killing flows

We want flows H or H such that

£.Q=0 and L£,G=0

The conditions on H(y, /") are

gl =(0 and G;H —i= )
oy Oy, Ay 0y,

Therefore, 3 )

ﬁ(l//,w*) = Z W;ij%

jk=1

173
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The HK flow is given by Hamilton’s equations

S L 8}?' or dd ={w  H)
dr 51% dr ’

. ) B dy . /il
e g e = SN U
Fo

k=1
which is the linear Schrédinger equation.

Bohm 1952
Kibble 1979
Heslot 1985
Ashtekar Schilling 1998

18
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Summary

+ Ontological clarity: { Ol i e

Epistemic probabilities
- E-phase space is a cotangent bundle:

Simplex plus “hypercubes” —>  Symplectic structure
Information geometry —>  Metric structure

—>  Complex structure

 HK-flows = Linear Schrédinger equation
N

1=
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2. Entropic Dynamics

20
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We seek ontological clarity:

The goal is to predict thf particles, x.

Particles ha UOSitions L =
to be inferred on the basis of relevan
expressed in the form of

2
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Entropic Dynamics: Maximize an entropy

S[P,Q]=- jdxfog ¥)
I' N

] o , a point in
The Prior: Motion is continuous. config. space

Impose short steps:

' 1 > a b
Q(X ‘ X) OCE‘-Xp e E;g%babmnmn

22
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The main constraint:

Introduce a “phase field”, @(x,,x,,..Xy) =@,

0 :
Impose (A@)=xk" or Zeﬁi (Ax))=«K
n xn
Important: (a) Directionality, correlations, etc.
(b) Local in x but nonlocal in 3d space.

(c) The phase field is an “angle”.

23
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Additional constraints: EM interactions, Spin 7%, etc.

(AxDYA (F)=k" (n=1..N)

N\\nector potential

The transition probability :

P(x’ ‘ x) o eXp Z( _; a?fgﬁbei:Agfj + ar [a”ﬂé » ﬁﬂAﬂ’ (fﬂ)] Ax?{: )

24
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The result:

1 1 |
Pl = Eexp - Z(Ea”b‘abzﬁxs,&xi +a0, ¢ Ax;’)

25
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“Entropic” Time

Is introduced to keep track of the accumulation of many
small changes.

(1) Introduce the notion of an instant
P(x',x)=P(x'| x)P(x) = [ dx P(x'

p,(x") = [ dx P(x'| x)p, (x)

(2) Instants are ordered

... and there is an Arrow of Entropic Time
N

26
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(3) Duration: the interval between instants

Define duration so that motion looks simple:

gk imat) 1*
N — 1(3 & _{i (AwsAwi) — W,
aﬁ axﬁ an
S ’
Lo L
05” 7??”
— fel
AN m o’

27
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The result for y=2 (Bohmian paths)

] ] Ax* \( Ax® |
Px'|x)=—exp— m =Syt —
P i ;{277& ﬁ){ At M At H

mass tensor: A=(n,a) myz=m0

A
expected particle velocity: i <A§ )
A

sV =00 D=h¢

28
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Entropic dynamics:

Integral form: (1) pHm(x')=J.dwcP(x'|x)pr(x)
Differential form: (2)0,p==0(p¥")
oH
. 0% =
Ch ity -

X

H[p,D]= j dx% o280 @0, + F[p]

29
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Symplectic form: Q= jdxd,o"‘ AdD

Metric structure: o = jdx[zi5pf +§.Or5‘bi
Px 1

Complex structure: Y =p ‘e

30
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Time evolution? Hamiltonian?

Hamiltonian flow: £ﬁQ =10

Killing flow: O G
IR e A

B h: . 8
H=J‘dx[?—m‘4364‘1183‘1’ VPP }
2 -

3
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The equations of motion:

32
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Summary:

 Entropic Dynamics = Quantum Mechanics

» Quantum Mechanics is a Hamiltonian dynamics
(in the “classical” sense) with coordinates (p, ®).

s

33
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Summary:

 Entropic Dynamics = Quantum Mechanics

» Quantum Mechanics is a Hamiltonian dynamics
(in the “classical” sense) with coordinates (p, ®).

* There is no need for quantum probabilities.
* Position is “ontic”; 7 is entropic time; m is mass.

» The Schrédinger equation is linear, time reversible,
gauge invariant...

* No Hilbert spaces were postulated.

55
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