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Introduction and Motivation lity L Supplemental slides

Bipartite and tripartite entanglement in holography

Back to basics: holographic entanglement entropy

Quantum extremal surface formula:
[Ryu-Takayanagi, Hubeny-Rangamani-Takayanagi,

Faulkner-Lewkowycz-Maldacena, Engelhardt-Wall, ...]
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Introduction and Motivation i lity ture work S ental slides

Bipartite and tripartite entanglement in holography

Ryu-Takayanagi is not enough!

m [he von Neumann entropy only depends on a bipartition of the
boundary state, so it can’t tell us anything about multipartite
entanglement.

Bl BQ

-—

A

m If we want to understand the rich structure of holographic
entanglement, we need more detailed entanglement measures.
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Introduction and Motivation on inequality
ocoe

Bipartite and tripartite entanglement in holography

The entanglement wedge cross-section

m Start simple: tripartitions.

m Natural geometric object associated with a tripartition: the
entanglement wedge cross-section g 4.5 [Neuyen-Devakul-Halbasch-Zaletel-Swingle,

Umemoto-Takayanagi]
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€0000
Reflected entropy and its properties

Canonical purifications

Defining the canonical purification

Given a density matrix p, write

p =" pilikil.

Define [, = ¥, /57 i) i) -
ifip = %ZJ e PE |E;)(E;| is thermal, then

1
¥,) = = > e PE2|E) |E;) = |TFD).
J
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Reflected entropy and its properties

Canonical purifications in gravity

Dutta and Faulkner used the gravitational path integral to argue that for
a holographic state, the canonical purification is obtained by sewing two
copies of the bulk together along their spatial boundaries. (Think of the
black hole — TFD sewing.)

>
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Reflected entropy and its properties

Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

RT(AB)

The cross-section entropy is half the entropy of the AA’ system.
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00080
Reflected entropy and its properties

Reflected entropy

For a bipartite state pag, the reflected entropy is

SR(A : B) = SVN(AA,)|.¢9).
L

According to Dutta-Faulkner, we have

area(oa.g)

SR(A i B) = 2GN

+ quantum corrections
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Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

RT(AB)
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00080 0
Reflected entropy and its properties

Reflected entropy

For a bipartite state pag, the reflected entropy is

SR(A i B) = SVN(AA,)WPL%'

According to Dutta-Faulkner, we have

area(oa.g)

SR(A : B) = 2GN

+ quantum corrections
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Reflected entropy and its properties

Some fundamental properties

m For the quantum info experts in the audience:!

SR(A:B), —I(A:B), = I(A: B'|B)y).

m [his implies
SplAzB)—1l{A:B) >0.
We will call Sg — I the Markov gap.

m If a holographic state has O(1/Gy) Markov gap, then it must have
O(1/Gp) multipartite entanglement. [Akers-Rath]

LJ(A: B) = S(A) + S(B) — S(AB).
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A cross-section inequality
00

Main result

Main technical result

For (time-symmetric) AdSs states with no matter, we have proven the
following inequality:

log(2)

2GN ]8UA;B|.

Sr(A:B)—I1(A:B) >

The quantity |Joa.g| is the cardinality of the cross-section boundary, i.e.,
the number of cross-section endpoints.
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Main result

Two examples
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A cross-section inequality
Gre

Main result

Heuristic interpretation

log(2)

Sr(A:B)—I(A:B) > G

]8UA:B|.

m Because Sg — I is O(1/Gp) only if there is significant tripartite
entanglement, this formula suggests that do 4.5 emerges from
irreducible tripartite entanglement.

m Generalizing this inequality to states with matter, or to higher
dimensions, would help us better understand universal tripartite
entanglement in quantum gravity.
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c 0000000000
Sketch of proof

RT and KRT surfaces

The Markov gap can be expressed
Let's look at an example two-party visually as

state:

j
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q c 080000000000
Sketch of proof

Reframing the question

We want to lower-bound the area difference between KRT and RT in
terms of the number of kinks in KRT.

Question

On a hyperbolic 2-manifold, if KRT is a geodesic with right-angled kinks
and RT the minimal homologous geodesic, can we show

area(KRT) — area(RT) > log(2) x |kinks|?
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A cross-section inequality uture work Supplemental slides

q c 008000000000
Sketch of proof

A simple example using right-angled pentagons

In hyperbolic space, the right-angled
pentagon Can use these to tile between KRT

and RT:

satisfies

a+ b—c > log(2).
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tion and Moti A cross-section inequality

000800000000

Sketch of proof

One more example

Generally, our strategy will be to tile the region between RT and KRT

with pentagons:
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A cross-section inequality
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Sketch of proof

Obstacles

Two main issues must be addressed:
These tilings can’t exist for higher-genus manifolds:

RT

Even in the absence of topological obstructions, how do we know

these tilings exist?
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A cross-section inequality

00OCCe000000
Sketch of proof

Strategy

Using covering space theory, we
Show that KRT is homotopic to a smooth geodesic ~.
Show that the homotopy region can be tiled with pentagons.
Use

Y ~homology KRT~Nh0m0|OgY RT

to show

area(RT) < area(y) < area(KRT) — log(2) x |kinks|.
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A cross-section inequality

00COCCOe000C0

Sketch of proof

The Poincaré disk

Let KRT be a kinked geodesic on the Poincaré disk with well-defined
boundary endpoints:

s

There is a unique geodesic v between those two endpoints. KRT is
homotopic to 7.
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A cross-section inequality

0C0CCO0e00C0
Sketch of proof

The Poincaré disk

For any two geodesics on the Poincaré disk, there is a unique geodesic
intersecting them both at right angles.

For each segment of KRT, draw the unique such geodesic connecting it
a9
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) 000CC000e0C0
Sketch of proof

Existence?

There's an important caveat — the unique geodesic connecting a
segment to v might not lie on the segment itself:

In the paper, we show that this cannot happen unless KRT
self-intersects.
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) 000000000080
Sketch of proof

Sketching the extension

To prove the general theorem, we use the fact that every hyperbolic
2-manifold is universally covered by the Poincaré disk:

By tracking lengths between the manifold and the universal cover
carefully, we complete the proof.
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0000C00000Ce

Sketch of proof

What did we learn?

2 |Og(2)|80‘I\AB|
4Gy '

In the proof we used, every point in doa.g was treated on equal footing.
To each endpoint, we associated two right-angled hyperbolic
pentagons. To each pentagon, we associate a minimal area difference of
2 log(2).

The proof technique is aesthetically in line with our guiding principle:
that each point in doa.g contributes some irreducible tripartite
entanglement. (Here, in the form of two pentagons.)

Sr(A:B)—I(A:B) >
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Future work
0

ction and Motivation

Generalizations?

It would be nice to know if the inequality holds for spacetimes with
matter satisfying a suitable energy condition. We'll need a new proof
technique to prove it. (Work in progress with Dan Eniceicu.)

Will some version of this inequality hold in higher dimensions? Two
natural generalizations:

Sr(A:B) —I(A: B) > Cy x area(doa.g),
Sr(A:B) —I(A: B) > Cy x components(doa.g).
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A quantum of tripartite entanglement?

AdS3 gravity has central charge ¢ = 3/2Gy. So we may rewrite our
inequality as

Sr(A:B)—I(A: B) > % log(2)|00 a5].

This bound is not satisfied in generic CFTs, but numerics show that the
limiting behavior seems universal. Where does clog(2)/3 come from in

2D CFT? (Independent work in progress, and work in progress with Yijian
Zou.)
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Reflected entropy and its properties

Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

RT(AB)

RT(AB)

The cross-section entropy is half the entropy of the AA’ system.

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 31/33



Future work
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A quantum of tripartite entanglement?

AdSs3 gravity has central charge ¢ = 3/2Gy. So we may rewrite our
inequality as

Sr(A:B)—I(A: B) > %Iog(2)|8(7,4;3|.

This bound is not satisfied in generic CFTs, but numerics show that the
limiting behavior seems universal. Where does clog(2)/3 come from in

2D CFT? (Independent work in progress, and work in progress with Yijian
Zou.)

Jon Sorce Perimeter Institute Seminar
The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 32/33



Pirsa: 21110037

iction and Motivatior on inequality iture work Supplemental slides
OC @00

Markov recovery

m Recall:
Sr(A : B)p —I(A: B)p =1(A: B’|B)Wﬁp>.

| Th IS Imp|IES [Fawzi-Renner, ..., Junge-Renner-Sutter-Wilde-Winter]

Sr — 1 > — _max log F(pass', Re—8s(paB))-

A— AA’
(Y

m Interpret the Markov gap as an obstruction to producing pags
from psp without touching the A system.
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