Title: The Markov gap for geometric reflected entropy

Speakers: Jonathan Sorce

Series: Perimeter Institute Quantum Discussions

Date: November 17, 2021 - 3:30 PM

URL: https://pirsa.org/21110037

Abstract: This talk concerns the "Markov gap," a tripartite-entanglement measure with a simple geometric dual in holographic quantum gravity. I will prove a new inequality constraining the Markov gap of classical states in quantum gravity, and interpret this inequality as a lesson about multipartite entanglement in holography. I will also speculate about signatures of the inequality in non-holographic field theories, and conjecture a new universal entanglement feature of two-dimensional CFTs.

Zoom Link: https://pitp.zoom.us/j/98327637522?pwd=TUJOQ0d1aU5Gc0RLTlJLd3B3Ty9LUT09

Pirsa: 21110037

Jon Sorce

Perimeter Institute Seminar

November 16, 2021

Jon Sorce

Introduction and Motivation

000

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 2/33

Outline

000

Introduction and Motivation

- 1 Introduction and Motivation
 - Bipartite and tripartite entanglement in holography
 - Reflected entropy and its properties
- 2 A cross-section inequality
 - Main result
 - Sketch of proof
- 3 Future work
- 4 Supplemental slides

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 3/33

00000

Bipartite and tripartite entanglement in holography

Back to basics: holographic entanglement entropy

Quantum extremal surface formula:

[Ryu-Takayanagi, Hubeny-Rangamani-Takayanagi,

Faulkner-Lewkowycz-Maldacena, Engelhardt-Wall, ...]

$$S_{
m vN}(A)_
ho = rac{{
m area}({
m QES})}{4G_N} + S_{
m bulk}.$$

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 4/33

Bipartite and tripartite entanglement in holography

Introduction and Motivation

000

Ryu-Takayanagi is not enough!

■ The von Neumann entropy only depends on a bipartition of the boundary state, so it can't tell us anything about multipartite entanglement.

■ If we want to understand the rich structure of holographic entanglement, we need more detailed entanglement measures.

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 5/33 00000

Bipartite and tripartite entanglement in holography

Back to basics: holographic entanglement entropy

Quantum extremal surface formula:

[Ryu-Takayanagi, Hubeny-Rangamani-Takayanagi,

Faulkner-Lewkowycz-Maldacena, Engelhardt-Wall, ...]

$$S_{
m vN}(A)_
ho = rac{{
m area}({
m QES})}{4G_N} + S_{
m bulk}.$$

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 6/33

Future work

Supplemental slides

Bipartite and tripartite entanglement in holography

The entanglement wedge cross-section

- Start simple: tripartitions.
- Natural geometric object associated with a tripartition: the entanglement wedge cross-section $\sigma_{A:B}$ [Nguyen-Devakul-Halbasch-Zaletel-Swingle,

Umemoto-Takayanagi]

ロト 4回ト 4 三ト 4 三ト 三 りゅつ

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 7/33

00000

99 Q

Reflected entropy and its properties

Canonical purifications

Defining the canonical purification

Given a density matrix ρ , write

$$\rho = \sum_{j} p_{j} |j\rangle\langle j|.$$

Define $|\psi_{\rho}\rangle \equiv \sum_{j} \sqrt{p_{j}} |j\rangle |j\rangle$.

Example

If $\rho = \frac{1}{Z} \sum_{j} e^{-\beta E_{j}} |E_{j}\rangle\langle E_{j}|$ is thermal, then

$$|\psi_{\rho}\rangle = \frac{1}{\sqrt{Z}} \sum_{j} e^{-\beta E_{j}/2} |E_{j}\rangle |E_{j}\rangle \equiv |\mathsf{TFD}\rangle.$$

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 8/33

Introduction and Motivation

000 0**0**000

Canonical purifications in gravity

Dutta and Faulkner used the gravitational path integral to argue that for a holographic state, the canonical purification is obtained by sewing two copies of the bulk together along their spatial boundaries. (Think of the black hole \rightarrow TFD sewing.)

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 9/33

Reflected entropy and its properties

Introduction and Motivation

000

Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

The cross-section entropy is half the entropy of the AA' system.

◆□▶◆□▶◆■▶◆■ 900

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 10/33

Reflected entropy and its properties

Reflected entropy

Definition

For a bipartite state ρ_{AB} , the *reflected entropy* is

$$S_R(A:B) \equiv S_{\mathsf{vN}}(AA')_{|\psi_{\rho}\rangle}.$$

According to Dutta-Faulkner, we have

$$S_R(A:B) = \frac{\operatorname{area}(\sigma_{A:B})}{2G_N} + \operatorname{quantum corrections}$$

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 11/33

Future work

Supplemental slides

Reflected entropy and its properties

000

Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

The cross-section entropy is half the entropy of the AA' system.

Jon Sorce

The Markov gap for geometric reflected entropy

Perimeter Institute Seminar

Pirsa: 21110037 Page 12/33 Reflected entropy and its properties

Reflected entropy

Definition

For a bipartite state ρ_{AB} , the *reflected entropy* is

$$S_R(A:B) \equiv S_{\mathsf{vN}}(AA')_{|\psi_{
ho_{\mathsf{l}}}\rangle}.$$

According to Dutta-Faulkner, we have

$$S_R(A:B) = \frac{\operatorname{area}(\sigma_{A:B})}{2G_N} + \operatorname{quantum corrections}$$

Perimeter Institute Seminar

Jon Sorce

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 13/33

Reflected entropy and its properties

Some fundamental properties

■ For the quantum info experts in the audience:¹

$$S_R(A:B)_{\rho}-I(A:B)_{\rho}=I(A:B'|B)_{|\psi_{\rho}\rangle}.$$

This implies

$$S_R(A:B)-I(A:B)\geq 0.$$

We will call $S_R - I$ the Markov gap.

■ If a holographic state has $O(1/G_N)$ Markov gap, then it must have $O(1/G_N)$ multipartite entanglement. [Akers-Rath]

 $^{1}I(A:B) = S(A) + S(B) - S(AB).$

<ロ > 4 回 > 4 回 > 4 直 > 1 直 り Q で

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 14/33

Main result

Main technical result

For (time-symmetric) AdS_3 states with no matter, we have proven the following inequality:

$$S_R(A:B) - I(A:B) \ge \frac{\log(2)}{2G_N} |\partial \sigma_{A:B}|.$$

The quantity $|\partial \sigma_{A:B}|$ is the *cardinality of the cross-section boundary*, i.e., the number of cross-section endpoints.

4日 1 4日 1 4日 1 4日 1 9 9 9 9

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 16/33

Main result

Heuristic interpretation

$$S_R(A:B) - I(A:B) \ge \frac{\log(2)}{2G_N} |\partial \sigma_{A:B}|.$$

- Because $S_R I$ is $O(1/G_N)$ only if there is significant tripartite entanglement, this formula suggests that $\partial \sigma_{A:B}$ emerges from irreducible tripartite entanglement.
- Generalizing this inequality to states with matter, or to higher dimensions, would help us better understand universal tripartite entanglement in quantum gravity.

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 17/33

RT and KRT surfaces

Let's look at an example two-party state:

The Markov gap can be expressed visually as

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 18/33

Reframing the question

We want to lower-bound the area difference between KRT and RT in terms of the number of kinks in KRT.

Question

On a hyperbolic 2-manifold, if KRT is a geodesic with right-angled kinks and RT the minimal homologous geodesic, can we show

$$area(KRT) - area(RT) \ge log(2) \times |kinks|$$
?

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 19/33

A simple example using right-angled pentagons

In hyperbolic space, the right-angled pentagon

satisfies

$$a+b-c \ge \log(2)$$
.

Can use these to tile between KRT and RT:

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 20/33

Future work

Supplemental slides

Sketch of proof

One more example

Generally, our strategy will be to tile the region between RT and KRT with pentagons:

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 21/33

Future work

Supplemental slides

Sketch of proof

Obstacles

Two main issues must be addressed:

11 These tilings can't exist for higher-genus manifolds:

Even in the absence of topological obstructions, how do we know these tilings exist?

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 22/33

Strategy

Using covering space theory, we

- **11** Show that KRT is *homotopic* to a smooth geodesic γ .
- 2 Show that the *homotopy* region can be tiled with pentagons.
- 3 Use

$$\gamma \sim_{\mathsf{homology}} \mathsf{KRT}_{\mathbf{k}} \sim_{\mathsf{homology}} \mathsf{RT}$$

to show

$$area(RT) \le area(\gamma) \le area(KRT) - log(2) \times |kinks|$$
.

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 23/33

The Poincaré disk

Let KRT be a kinked geodesic on the Poincaré disk with well-defined boundary endpoints:

B

There is a unique geodesic γ between those two endpoints. KRT is homotopic to γ .

◆ロト ◆団 ▶ ◆豆 ▶ ◆豆 ● のへで

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 24/33

The Poincaré disk

Fact

For any two geodesics on the Poincaré disk, there is a *unique* geodesic intersecting them both at right angles.

For each segment of KRT, draw the unique such geodesic connecting it to γ :

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 25/33

Existence?

There's an important caveat — the unique geodesic connecting a segment to γ might not lie on the segment itself:

In the paper, we show that this cannot happen unless KRT self-intersects.

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 26/33

Future work

Supplemental slides

Sketch of proof

Sketching the extension

To prove the general theorem, we use the fact that every hyperbolic 2-manifold is universally covered by the Poincaré disk:

By tracking lengths between the manifold and the universal cover carefully, we complete the proof.

Jon Sorce Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 27/33

What did we learn?

$$S_R(A:B) - I(A:B) \ge \frac{2\log(2)|\partial \sigma_{A:B}|}{4G_N}.$$

In the proof we used, every point in $\partial \sigma_{A:B}$ was treated on equal footing. **To each endpoint, we associated two right-angled hyperbolic pentagons.** To each pentagon, we associate a minimal area difference of $2 \log(2)$.

The proof technique is aesthetically in line with our guiding principle: that each point in $\partial \sigma_{A:B}$ contributes some irreducible tripartite entanglement. (Here, in the form of two pentagons.)

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 28/33

Generalizations?

- 11 It would be nice to know if the inequality holds for spacetimes with matter satisfying a suitable energy condition. We'll need a new proof technique to prove it. (Work in progress with Dan Eniceicu.)
- 2 Will some version of this inequality hold in higher dimensions? Two natural generalizations:

$$S_R(A:B) - I(A:B) \ge C_d \times \text{area}(\partial \sigma_{A:B}),$$

 $S_R(A:B) - I(A:B) \ge C_d \times \text{components}(\partial \sigma_{A:B}).$

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 29/33

A quantum of tripartite entanglement?

 AdS_3 gravity has central charge $c = 3/2G_N$. So we may rewrite our inequality as

$$S_R(A:B) - I(A:B) \ge \frac{c}{3} \log(2) |\partial \sigma_{A:B}|.$$

This bound is not satisfied in generic CFTs, but numerics show that the limiting behavior seems universal. Where does $c \log(2)/3$ come from in 2D CFT? (Independent work in progress, and work in progress with Yijian Zou.)

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 30/33

Future work

Supplemental slides

Reflected entropy and its properties

Introduction and Motivation

000

Back to the entanglement wedge cross-section

Let's look at the canonical purification of our standard bipartite state:

The cross-section entropy is half the entropy of the AA' system.

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q O

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 31/33

A quantum of tripartite entanglement?

 AdS_3 gravity has central charge $c = 3/2G_N$. So we may rewrite our inequality as

$$S_R(A:B) - I(A:B) \ge \frac{c}{3} \log(2) |\partial \sigma_{A:B}|.$$

This bound is not satisfied in generic CFTs, but numerics show that the limiting behavior seems universal. Where does $c \log(2)/3$ come from in 2D CFT? (Independent work in progress, and work in progress with Yijian Zou.)

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 32/33

Markov recovery

Introduction and Motivation

000

Recall:

$$S_R(A:B)_{\rho} - I(A:B)_{\rho} = I(A:B'|B)_{|\psi_{\rho}\rangle}.$$

■ This implies [Fawzi-Renner, ..., Junge-Renner-Sutter-Wilde-Winter]

$$S_R - I \ge -\max_{\mathcal{R}_{A \to AA'}} \log F(\rho_{ABB'}, \mathcal{R}_{B \to BB'}(\rho_{AB})).$$

Interpret the Markov gap as an obstruction to producing $\rho_{ABB'}$ from ρ_{AB} without touching the A system.

Jon Sorce

Perimeter Institute Seminar

The Markov gap for geometric reflected entropy

Pirsa: 21110037 Page 33/33