Title: Large-N solvable models of measurement-induced criticality
Speakers. Subhayan Sahu

Series. Quantum Matter

Date: November 23, 2021 - 3:30 PM

URL.: https://pirsa.org/21110031

Abstract: Competition between unitary dynamics that scramble quantum information non-locally and local measurements that probe and collapse
the quantum state can result in a measurement-induced entanglement phase transition. We introduce large-N Brownian hybrid circuits acting on
clusters of qubits, which provide an analytically tractable model for measurement-induced criticality. The system isinitially entangled with an equal
sized reference, and the subsequent hybrid system dynamics either partially preserves or destroys this entanglement depending on the measurement
rate. Our approach can access a variety of entropic observables, which are represented as a replica path integral with twisted boundary conditions.
Saddle-point analysis reveals a second-order phase transition corresponding to replica permutation symmetry breaking below a critical measurement
rate. The transition is mean-field-like and we characterize the critical properties near the transition in terms of a simple Ising field theory in 0+1
dimensions. By coupling the large-N clusters on a lattice, we also extend these solvable models to study the effects of power-law long-range
couplings on measurement-induced phases. In one dimension, the long-range coupling is relevant for ?&It;3/2, with ? being the power-law
exponent, leading to a nontrivial dynamical exponent at the measurement-induced phase transition. More interestingly, for ?&It;1 the entanglement
pattern receives a sub-volume correction for both area-law and volume-law phases. The volume-law phase for ?&1t;1 realizes a novel quantum error
correcting code whose code distance scales as L(2-27).
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Killing entanglement one local measurement at a time
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Generic unitaries create entanglement,
and local measurements (projective or
weak) reduce entanglement.
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Measurement induced entanglement transition

% = Local Projective measurements

Any subregion has
Volume law entanglement

Sa~A

p — probability of

measuring in one layer of

the circuit
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Volume Law

= Locality preserving scrambling unitary

Area Law

ol ol

Any subregion has
Area law entanglement

Sa~ 0A

[Li, Chen, Fisher PRB 2018, 2019]

[Skinner, Ruhman, Nahum PRX 2019] ...

Page 4/32



Goals

 (Can we understand the phases and the phase transitions analytically?

Volume Law Area Law

®
o .

* Are there other dynamical phases possible if we add more ingredients, namely long-range
interactions in the unitaries?
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Phases and phase transitions

Condensed matter: study of phases of matter and phase transitions between them

Phase Diagram for Water
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Outline

. Setup )

a) Purification transition
b) Brownian circuits on qubits
¢) Averaging of Renyi entropies over trajectories
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. Analytically accessible MIPT in the Brownian circuits

a) Replica structure
b) Replica symmetry breaking, MIPT, critical properties

. Brownian circuits on a lattice with long-range couplings

a) Effective statistical mechanical model
b) Entanglement phase diagram
¢) Quantum error correcting properties

. Future directions and Summary
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Measurement induced purification transition
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Purity z(¢t) = Tr (p%(t)) — ¢Sk
Rényi entropy: SI(;) = ﬁ InTrp',

At times T ~ poly(N)

Purity < 1 Purity =1

[Gullans, Huse PRX 2020] ...
o
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Spherical cow for MIPT: All to All Brownian circuit model

N qubits with
all-to-all
interaction
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Measurement

Scrambling
Unitary

At
2

Scrambling
Unitary

= exp[—iH(t)At/2]
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Forced measurement due to post-selected trajectories
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Spherical cow for MIPT: All to All Brownian circuit model

N qubits with
all-to-all
interaction
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Measurement

Scrambling
Unitary
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Forced measurement due to post-selected trajectories
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Renyi entropy and circuit averaging

Measurements result in different trajectories / Kraus operators, pr = Z KapoK l
a

Post-selected circuit is a fixed non-unitary transformation, resulting in the un-normalized state,
pe = VpoVT
o

We want to calculate the averaged Renyl entropy, which is hard to do analytically — have to
rely on numerics [average of ratio]

Trp;
(Trpt)Q

Trpj
(Trpe) ’

= —]Ejllfl

post—selection

S® = _E;,In

We instead calculate a related entropic quantity, called quasi-Renyl entropy, which is easier
to calculate analytically [ratio of averages|
E;Trp?

S = —In | ———
E; (Trpt)

As experiments, both are hard to simulate [equal scaling of quantum resources]
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Renyi entropy and circuit averaging

Measurements result in different trajectories / Kraus operators, pr = Z KapoK l
a

Post-selected circuit is a fixed non-unitary transformation, resulting in the un-normalized state,
pe = VpoVT

We want to calculate the averaged Renyi entropy, which is hard to do analytically — have to
rely on numerics [average of ratio]
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Replica structure of Renyi entropy

ETrp;  ETr SWAP; (p; ® py)
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* Boundary conditions separate the numerator and denominator.
* There is an in-built replica permutation symmetry, for example 1+ 3, 2 < 4

Explicit replica permutation symmetry (Se X S2) X Zo
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Disorder averaging and path integral

Circuit averaging introduces inter-replica correlations
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Large N — Saddle Point calculation [SYK, Mean field spin glasses]
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Replica Symmetry Breaking

Z subgroup of the replica symmetry is spontaneously broken for v < 7.

v <Ye Y > Ve

. RC[IMF] , RB[IMF]

-04 -02 0.0 0.2 04 -04 S0z 00 0z 04

Re[¢] o Rel[¢]

Replica-symmetry breaking field: ¢ ~ Fio + F3q4 — F14 — Fbg
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[Parisi, 202 | Nobel]
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Replica Symmetry Breaking

Z subgroup of the replica symmetry is spontaneously broken for v < 7.

T =Y oYy

. RC[IMF] | RB[IMF]
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Re[¢] Re[¢]

Replica-symmetry breaking field: ¢ ~ Fio + F3q4 — F14 — Fbg

Close to the critical point, simple (0+1)D Ising field theory
o
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Boundary effects and Instanton

The boundary conditions in the ‘spin’ problem shows up in the ¢fields

¢ ¢

Trp®s 4 > Yo

<

At T ~ poly(N)

TeXp (_NAIinstanton) for Y <Ye
otherwise.

Purity < 1 Purity =1
E Purity ~ e
Ye

A -
\__critical exponent

o

In the (0+1)D Ising field theory, Alinstanton ~ (Ve — '}’)3/2 — S@ ~ (e — ’y)S/Q
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Late time purification

T 2 exp NAI

M

\ 4

N

A 4

At T ~ O(exp N), instantons proliferate, restores replica-symmetry and leads to Purity = 1.
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Measurement induced purification transition

At times T" ~ poly(N)

R Purity<1 Purity =1
e ! We obtained
- p* P phenomenology
” (2) A and critical
" S R properties in

tractable model

[ < N| l. o an analytically
t *®

[Bentsen™, S5%*, Swingle PRB 202 1]
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Mixed phase as quantum error correcting code

Entanglement survives in the mixed phase — can be thought of as a dynamically generated

FUATIITR. BITQF ERFiEtiing Chue. [Choi, Bao, Qi, Altman 2019, Gullans, Huse 2019,

Li, Fisher 2020 ...]

Information stored in R can be
recovered, even if d erased. Maximal

d = “code distance” R
o
L0,
1
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Mixed phase as quantum error correcting code

Entanglement survives in the mixed phase — can be thought of as a dynamically generated

AN, SEEGF EGREECHng, Sace. [Choi, Bao, Qi, Altman 2019, Gullans, Huse 2019,

Li, Fisher 2020 ...]

Subsystem entropy: Ay
Y by : - For v < 7. and k > k.,
Tr[pi] i. i.
trivial ﬁ;‘z)(z ; R) —_ ‘5%2—)1.: + ‘§£2) . S"r}?) ~0
Ye
iii. iv.
o _ At T ~ poly(N) for v < 7.
. instanton
instanton =
O{“ A
= ke Code rate ~ Sg) ~ NAT
""""""" — Code distance ~ N (1 — k.(7))
0 1/2 1
1
k. — = (7. — 7)#, for v close to v, with p = 1.

[Bentsen™, S5%*, Swingle PRB 202 1]
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Putting the clusters in a chain
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Effective statistical mechanics model

Now, the effective field theory is given by a (1+1)D anisotropic Ising field theory,

IN/t [_¢a§¢_/¢r¢s|7"—8|2a—(7c_7)¢2/2—|—¢4/4 , O~ Flo+F3—F14—Fog
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Entanglement phase diagram
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«Q range interaction on
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Novel fractal corrections to
volume law entanglement
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Entanglement phase diagram

Critical properties of the transition — non-CFT

like for 2ax < 3
/ ~ (e =) 15 1

I PP | )
05 10 15 20 25 230 35 40 20

|

Novel fractal corrections to
volume law entanglement

[$S%, Jian*, Bentsen, Swingle ArXiv:2109.0001 3
Related: Block, Bao, Choi, Altman,Yao 202 1]
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Quantum error correction in volume law phase

Entanglement survives in the volume law phase — can be thought of as a dynamically
generated quantum error correcting code.

I(Ag: R) =0 for d < L?*72* in the volume-law phase

At T ~ poly(N) for v < 7.

Code rate ~ S’g) ~ oL
Code distance ~ L2—2«

05 10 15 20 25 30 35 40 2«

[SS%, Jian*, Bentsen, Swingle ArXiv:2109.00013]
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Current directions

* In all analytical approaches to hybrid dynamics, focus has been on the ‘annealed’ entropy.

E, Trp?

5@ _ _py | BTk
E; (Trp)

Recently the limit $ =1 was taken [Jian, Swingle 2021] in a similar Brownian circuit for fermions. Can
we take the n — 1 limit for qubits? Can we calculate the ‘quenched’ entropy?

* Entangling (multi-particle) measurement protocols have been shown to harbor novel hybrid
entanglement phases [Sang, Hsieh 2020, Lavasani, Alavirad, Barkeshli 2020 ...]. Can we realize them in

solvable Brownian circuits?

* Brownian circuits to study other entanglement or spectral transitions, such as MBL? Can we retain
solvability while considering a Floquet version?
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Big picture

Out-of-equilibrium
scrambling phases
MBL, MIPT

Scrambling and

Chaos

TN methods to study OTOCs,
Chaos bounds in local systems
Quantum information in

many-body systems
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Big picture

Thermalization

Many-body quantum
chaos

Out-of-equilibrium
scrambling phases
MBL, MIPT

Quantum simulation
and information
processing

Sparse models,
Tensor Network methods
Scrambling and

Chaos

TN methods to study OTOCs,
Chaos bounds in local systems
Quantum infbrmation in

many-body systems
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Big picture

Thermalization
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Summary and future questions

» We introduced analytically solvable models for measurement induced criticality.

* Identified replica symmetry breaking in the effective field theory as the mechanism responsible
for MIPT. We derive a simple mean field description of the phase transition, with analytically
obtained critical exponents.

o
» We generalize to one dimensional chain with power-law long range couplings. We identify novel

entanglement phases, with quantum error correcting properties enhanced by the long-range
interaction.

* Replica limit? Entanglement entropy?

* Other interesting, non-equilibrium, entanglement phases with measurement and scrambling? Can
we probe MIPT with simpler, more experimentally feasible observables?
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Thank )/OU! 2104.07688 (PRB 2021) + 2109.00013
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