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Abstract: Quantum groups are the proper tool to describe quantum gravity in three dimensions. Several arguments suggest that 2-groups should be
used to formulate four dimensional quantum gravity. | will review these motivations and will discuss in particular how 2-groups can be used to
extend the definition of a phase space associated to a triangulation or to modify the notion of group field theory to generate topological models. |
will aso highlight how the kappa Poincaré deformation arises in the 2-group context.
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Motivations
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Quantum gravity: a constrained topological model

Gravity in four dimensions can be formulated as a constrained BF

(topological) field theory
8= (BAF)+ A CEVSUERE R R (AN
J M M

SL(2,C) Chern—Simons theory, a non-planar graph operator, and 4D quantum
gravity with a cosmological constant: Semiclassical geometry (2015).

Haggard, Han, Kaminski, Riello

State sum models used to describe quantum geometries

in four dimensions (spin foam models).

How to describe the states of a four dimensional curved quantum geometry?
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Three dimensional quantum gravity

e Three dimensional Euclidean gravity with cosmological constant

connection A : su-valued 1-form
S = (eNF)Y+A (ANeNe) , .
M M triad e : ana-valued 1-form

e Discretization: Poisson Lie group as decoration of curved cellular

decompositions
edges of a triangulation s triad —  links of the dual complex
links of the dual complex < connection — edges of a triangulation

o Quantum groups describe quantum states of discrete (homogeneously)
curved geometries.

On the origin of the quantum group symmetry in 3d quantum gravity (2020).

Dupuis, Freidel, Girelli, Osumanu, Rennert
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Three dimensional quantum gravity

Aspects of three dimensional quantum gravity based on (quantum) groups:

> metric degrees of freedom;
> quantum states of curved discrete geometries;

> topological features: curvature around a vertex.
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Four dimensional quantum gravity

Based on the features of three dimensional quantum gravity, what do we

expect in four dimensions?

Y

metric degrees of freedom: degenerate geometries;

> quantum states ofkcurved discrete geometries (encoding the
cosmological constant);

> topological features: curvature around an edge (1-holonomy) and

curvature around a vertex (2-holonomy).

A more sensitive Lorentzian state sum (2013). Crane, Yetter
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The Eckman-Hilton argument

Eckman-Hilton argument
By decorating only the 2d surfaces of a cellular decomposition, the group

of such decorations must be abelian.

hlhg h2h4 - hlh3h2h4

hy ho
Y Y
ho>hs = hsho
hs ha ﬂ
- h1 h>
h = h1 h2 h3 h4
h3 hy

o
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Discretization of four dimensional BF theory

The fields of four dimensional BF theory based on the gauge group G are

x connection: » A g-valued 1-form;

x bi-vector: B g"-valued 2-form.

One can discretize the four dimensional BF theory in two ways:

Bi-vector: faces of a triangulation. Connection: edges of a triangulation.
Connection: links of a dual complex. Bi-vector: wedges of a dual complex.
X metric degrees of freedom; v' metric degrees of freedom;
X curved geometry; ? curved geometry;
? curvature around a vertex; v/ curvature around a vertex;
v/ curvature around an edge. X curvature around an edge.

6
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Discretization of four dimensional BF theory

The fields of four dimensional BF theory based on the gauge group G are

x connection: A  g-valued 1-form;

x bi-vector: B g"-valued 2-form.

One can discretize the four dimensional BF theory in two ways:

Bi-vector: faces of a triangulation. Connection: edges of a triangulation.
Connection: links of a dual complex. Bi-vector: wedges of a dual complex.
X metric degrees of freedom; v' metric degrees of freedom;
X curved geometry; ? curved geometry;
? curvature around a vertex; v/ curvature around a vertex;
v/ curvature around an edge. X curvature around an edge.

Need decorations on links, faces and on wedges, edges.

A

6
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Groups and 2-groups

Groups G are used to describe gauge symmetries: group elements

(holonomies) define transformations between points of a target space M:

g
/_\l Y, L/

o .« ¢’ =n(g)e

2-Groups G introduces an extra layer: group elements g (1-holonomies)
define transformations between points of a target space M, and group

elements h (2-holonomies) define transformations between 1-holonomies:

¢ = m(g)d
g =t(h)g

g
.G‘
gf

An invitation to higher gauge theories (2015). Baez, Huerta

~I

Pirsa: 21110027 Page 11/28



More on 2-groups

Definition
A 2-group (also known as crossed module of groups) G = (G, H,p, t) is:

o a group G of 1-holonomies;

» a group H of 2-holonomies;

\b o a group homomorphism t : H — G;

g =t(h e a group action >: G x H — H;

Horizontal composition Vertical composition

N AN e U

There is a compatibility relation between horizontal and vertical

hg h

compositions which implies compatibility conditions between the action
and the t map.

8
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Quantum gravity with 2-groups

A model of four dimensional quantum gravity based on 2-groups has access
to one and two dimensional decorations in both the triangulation and the
dual complex: decorations on links and wedges, edges and faces:

v/ metric degrees of freedom;

v/ quantum states of a curved discrete geometry;

v curvature around a vertex (2-holonomy);

v curvature around an edge (1-holonomy).

9
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Phase space of a triangulation
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Skeletal 2-groups
As a starting point we deal with skeletal 2-groups.
s
Definition
Skeletal 2-groups are a class of 2-groups with a trivial t map. This implies

that the group H of 2-holonomies is abelian.

The skeletal 2-group, regarded as a crossed module, is nearly equivalent to

a semi-direct product of groups:

Gg=GxH.

Examples of skeletal 2-groups are the Fuclidean and the Poincaré 2-groups:
o Lorentz group of 1-holonomies G = SO(3,1);
« group of translations of 2-holonomies H = R*;
o trivial t map: t(h) =1, for all h € H;

« natural action of the Lorentz group on 4-vectors;

10
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Phase space of a skeletal 2-group

o If a Lie group G is the space of configurations, its co-tangent bundle is

interpreted as the associated phase phase
d
T"G=G xR = flat momentum space

« [f a Poisson Lie group G is the space of configurations, the phase space
is its Heisenberg double, which encodes a curved momentum space.

Heisenberg double H
The Heisenberg double of a group G is the group based on the double

cross product G <t G* equipped with a symplectic Poisson structure.

We define the phase space of a triangulation decorated by a skeletal
2-group G as the Heisenberg double of the semi-direct product G x H.

1L
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Symplectic reduction

* The Heisenberg double defines the fundamental building block of phase

space: the atomic phase space

triangulation
P=(GxH)x(G" xH")
)\ dual complex
configuration: (link u € G, wedge y € H) y
momentum: (edge A € H" j face g € G") 1?3 R y
~

x We fuse atomic phase spaces through symplectic reduction:

1. impose a geometric constraint to fuse the (atomic) phase spaces. This
condition, called momentum map, is enforced as a constraint on some
group elements;

2. as a consequence, the variables dual to the ones that have been
constrained are glued;

3. such fusion of (atomic) phase spaces is still a phase space.

12
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Symplectic reduction: examples

Example 1: consider two atomic phase spaces and impose the identification

of the link variables u € G.

A1

AR

Lt

e The geometric constraint is the identification of the links;
0 O var 3 . =l :
o it is imposed through the momentum map u1u, = € G;
o dually, the face decorations are glued in a total one: (31 * 3;

e If P1, P> are the initial phase spaces, the resulting fused phase space is

e — (731 X PQ)//G* .

13

Pirsa: 21110027 Page 18/28



Symplectic reduction: examples

FExample 2: triangle phase space. To construct the phase space of a triangle,
consider three atomic phase spaces P; and impose three geometric

constraints: identification of the three links and the closure of the triangle.

Momentum maps

A
2 )\3
U = u ) B
== 3 = (31 % B9 % 33 :
e = U5 iy ~~ il v
total face decoration

A1 =1

N A1

Denote C: = (G* x G* x H) the set of groups respect to which the
symplectic reduction is taken. The triangle phase space is

Pr = (771 X Pz % pS)//Ct .

14
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Outcome

> Phase space of a triangulation with edge and (flat) face decorations.
o triangle phase space: symplectic reduction respect to Cy;
e tetrahedron phase space: symplectic reduction respect to Cr;
o phase space of a full link: symplectic reduction respect to C;.

The phase space of a triangulation 7 with dual complex 7™ is

P=(xP)/(xe xc xa).
o i teT TeT  IeT*
> Applications:
e Poincaré 2-group: our construction recovers the G-networks
x configuration:  SO(3,1) on links R* on wedges
* momentum: R* on edges R® on faces

Quantum geometry for higher gauge theory (2019).
Asante, Dittrich, Girelli, Riello, Tsimiklis

o k-Poincaré 2-group: a generalization of G-netowrks is obtained

* configuration:  SO(3,1) on links R* on wedges
* momentum: AN(3) on edges R® on faces

Polyhedron phase space using 2-groups: x-Poincaré as a Poisson 2-group (2021).

Girelli, L., Tsimziklis
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Outcome

> Phase space of a triangulation with edge and (flat) face decorations.
o triangle phase space: symplectic reduction respect to Cy;
e tetrahedron phase space: symplectic reduction respect to Cr;
o phase space of a full link: symplectic reduction respect to C;.

The phase space of a triangulation 7 with dual complex 7™ is

7 2
P=(xP)/(xe xc xa).
o i teT 1T  IeT*
> Applications:
e Poincaré 2-group: our construction recovers the G-networks
x configuration: SO(3,1) on links R* on wedges
* momentum: R* on edges R6 on faces
Quantum geometry for higher gauge theory (2019).
Asante, Dittrich, Girelli, Riello, Tsimiklis
o k-Poincaré 2-group: a generalization of G-netowrks is obtained
* configuration:  SO(3,1) on links R* on wedges
* momentum: AN(3) on edges R® on faces

> Insights on the proper geometric conditions needed for gluing cellular

decompositions with decorations on edges and faces.

Polyhedron phase space using 2-groups: x-Poincaré as a Poisson 2-group (2021).

Girelli, L., Tsimziklis
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2-Group field theory
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Kinematics: field and Fourier transform

> The field in a 3+1d 2-group field theory is a function on the four links

and the siz wedges that compose the 2-graph dual to a tetrahedron:
d(ur, ..., U y1,...,y) € F(G** x H*®).

It can be written as a function on twelve copies of a 2-group G,

O({(Vias tia)}) € F(G*'?) with the proper geometric constraints.

> The Fourier transform is an invertible map between dual 2-groups
F : G = G* defined as

FIF I B) = / dudy E((y, u), (M 8)) £ (v u).

The kernel of this Fourier transform is called 2-plane wave. Its
properties encode the proper geometric conditions to fuse phase spaces.

16
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2-GGauge transformation and closure constraint

> The 2-gauge transformation on the (y, u) variables:

u = t(x)hu

y'=(h>y)x™"

Here h € G and x € H are the 2-gauge variables. The field is invariant

under the projector P that encodes the 2-gauge transformation.

> The Fourier transform of the projected field gives the closure

constraint
4
]‘—[(P (5)] = CA . (5 : é({(/\;;a: :fﬁ’,-;a)}) = 8(,"3152.53.34) H 8()\,1’(3,)) .
i—1

This encodes the closure of a tetrahedron.
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Dynamics

> Action: in analogy with group field theory, we defined the action of
2-group field theory as a contribution of
e an interaction term: the product of five fields with the combinatorics of
a 4-simplex;

o a kinetic term: the product of two fields. It has the role of gluing
4-simplices by identifying a pair of tetrahedra.

> A model of discrete geometry is topological if it is invariant under the

Pachner moves. In four dimensions there are three Pachner moves:

e P 5: takes one 4-simplex in a combination of five;
o P54: takes two 4-simplices in a combination of four:
e« P33: takes three 4-simplices in a combination of three.

Our definition of 2-group field theory is a topological model.

The definition of 2-group field theory ts a work in progress...

18
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Dynamics

We expressed the 2-group field theory as a state sum model:

> triangulation: the state sum is the proper combination of tetrahedra

amplitudes

4
Z = ZH(() (B1528304) H (Ait(8;) ))
i=1

and coincides with the Yetter model;

TQFT’s from homotopy 2 types.J. Knot Theor. Ramifications (1993). Yetter

> dual complex: the state sum is a combination of polyhedra
z=Y"T] (5@@ o) T 6(r(x,-)h;)) |
IF i=1

that encode the 2-curvature around a vertex and the I-curvature
around the edges. In the case of the Poincaré 2-group, the model
generates the G-networks and is equivalent to the
Korepanov-Baratin-Freidel (KBF) model.
A 2-categorical state sum model (2015). Baratin, Freidel
19
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There is much more...

Some aspects of 2-groups to be explored:

o representation theory (Peter-Weyl theorem for 2-groups);
o quantum 2-groups and 2-Hopf algebras;
e beyond 2-groups?

Possible future works:

> the geometric version of 2-group field theory;
> higher ca.tegoriei can be used to introduce matter degrees of
freedom:
* 2-groups encode topological defects for 2d manifolds;
* 3-groups encode topological defects for 3d manifolds.

2d 3d

Higher Gauge Theories Based on 3-groups (2019). Radenkovic, Vojinovic 20
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Thanks
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