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Abstract: Spectroscopic surveys are a powerful cosmological probe, encoding information about structure formation and the geometry of the
universe in the 3D distribution of galaxies. Upcoming surveys like DESI, which will increase the number of measured galaxy redshifts by an order
of magnitude, will test our ability to use this information while providing opportunities to test fundamental physics in unprecedented ways. In this
talk | will discuss our recent work on a new method to combine the two main prongs of these surveys--redshift-space distortions and BAO--within
the framework of Lagrangian perturbation theory. As an illustrative example, | will discuss the application of this method to data from the BOSS
survey, obtaining cosmological constraints that are competitive but consistent with primary CMB and lensing measurements. | will also discuss
future prospects for perturbation theory analyses of large-scale structure, for example by jointly analyzing spectroscopic and lensing surveys.
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Redshift =z

Forward Models of
Spectroscopic
Surveys
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Spectroscopic Surveys

Spectroscopic surveys are a unigue,
3D probe of large-scale structure.

Improvements in coming years will
be dramatic: 1.5 million galaxies
(BOSS) = 35 million galaxies (DESI)!

Need to come up with

optimal/flexible ways to use this data.
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Spectroscopic Surveys: What are they good for?

CMASS Correlation Function

Two (traditional) prongs:
1. Redshift-Space Distortions (RSD)

- Physics: Cosmic velocities, matter
clustering amplitude, growth of
structure, general relativity

{10? 2. Baryon Acoustic Oscillations (BAO)

- Physics: Cosmological distances
(Alcock-Paczynski effect),
geometry, expansion history,
initial conditions at
recombination

150

-100

Of course, can also do neutrino masses,
Credit: Samushia et al. (2013) non-Gaussianities, etc.
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Forward Models from Cosmology to Data

Theory of
Structure Formation

=

Observation

— N Observed Data

Cosmology Nonlinear Clustering

Cosmological Parameters Two Point Functions (P, §) Binned and Windowed
Pre- and Post-Reconstruction Clustering Statistics
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Rough idea: Perturbation Theory predicts many observables of
cosmological interest within a consistent framework -2
Operate directly at level of data to constrain cosmology.

L o exp {(m(e) —d)TC Y (m(©) — &)}, d = (Pp, €50 )

\ J |\ ] |\ )

) | | |
Data Model Data
Covariance
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Theory of
ucture Formation

e

Observation

—

Nonlinear Clustering Observed Data

Cosmology

Cosmological Parameters Two Point Functions (P, §) Binned and Windowed
Pre- and Post-Reconstruction Clustering Statistics
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Isn’t That What We’ve Always Done?

No! And.... it’s also not necessarily what you always want to do.

Traditional approach: recognize physically that spectroscopic surveys
mostly measure two things:

- RSD: measure fog(z) from anisotropic clustering

- BAO: distances/Alcock-Paczynski effect (a’s ) from peak, modulo r
(often with help of reconstruction)

Advantage: easy-to-understand likelihood for broader community.

Disadvantage: not really probing same degrees of freedom as LCDM,
assumes terms beyond fog, a marginalized away properly
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Intuitive at a phenomenological level:
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a’s: Sets distance scale of spectra.
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So, what did we do in the past?

Basic Approach: Take the initial conditions to be mostly fixed

(because... Planck) but allow for differences in late-time physics, i.e.
expansion rate or growth of structure.

Theory of
Structure Formation

‘ Nonlinear Clustering

Observation

=

“Cosmology” Observed Data

Linear Power Template Fixed to CMB Two Point Functions (P, §) Binned and Windowed
Free: summary statistics fog(z), a’s Pre- and Post-Reconstruction Clustering Statistics
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But, combining data was decidedly non-trivial.
Ideally, use full-shape RSD + post-recon BAO for tighter constraints:

“Cosmology”
Pre-Recon P, “
fog a's ‘ | ‘ Observed Pre-Rec P,

“Cosmology”
Post-R P -
e ‘ Sl ‘ Observed Post-Rec P,

... not to mention Fourier vs. configuration space.

Analyze separately, so have to use parameter covariances implied by mocks.
\FACICL
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Template Fit Caveats

Caveat: Not all clustering signal obeys fog(z) scaling.
At the linear theory level

ng(k: /J‘) — (bIJS T fJSﬂg)z(JS_QlDlin(k))
but beyond this there are plenty of terms that scale like
o6, Toa oot FPos, fiak

and similarly bias terms have contributions with different scaling...
though of course these are subdominant.
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Template Fit Caveats Caveat

All of these caveats are “ok” if the goal is to compare with CMB, in
which case r, and og are essentially known.

Not inherent issues of template fits: possible, with a little bit more
trouble, to include fog(z) and og4(z), AP and BAO scales as separate
parameters.

Goal of this talk is to explain how to do “joint” fits of spectroscopic
surveys when using “true” (e.g. ACDM) cosmological parameters.
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What's different in direct cosmology fits:

1. Don’t need to move around linear power spectrum

- changes in BAO and growth rates inherent in how initial
conditions/Boltzmann codes respond to cosmological parameters

- "straightforward” what the parameters mean

2. Maybe we can also streamline combining parameters!

- If the theory model is good enough we can predict whatever data
outputs we want within the theory and do everything “at once”

3. Of course, hybrid cosmology + template fits also possible (e.g
Philcox et al. 2020).
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Why (Lagrangian) Perturbation Theory?
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Theory of
Structure Formation

Observation

=

Cosmology Nonlinear Clustering Observed Data

Cosmological Parameters Two Point Functions (P, §) Binned and Windowed
Pre- and Post-Reconstruction Clustering Statistics
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Two Necessary Ingredients

1. Accurate model of redshift-space
distortions including nonlinear
bias, fingers of god, etc.

2. Accurate model of nonlinear
damping of BAO due to bulk (IR)

displacements, and of
reconstruction, which reverses
some of the damping by
reconstructing displacement field.

Both well-modeled by Lagrangian perturbation theory.

Figure OréditeiPadmanabhan et al. 2012
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No, not that perturbation theory:
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(Effective) Perturbation Theory

Galaxies are complicated! Form via gravitational collapse, star
formation, active galactic nuclei etc.

However, on large scales we can isolate the effect of long-wavelength
modes on this small-scale astrophysics.

These responses can be perturbatively enumerated order-by-order—
number of terms limited by fundamental symmetries.

Pirsa: 21110019 Page 23/41



(Effective) Perturbation Theory: Bias Expansion

An important example is given by the bias expansion linking the
distribution of galaxies to that of matter:

1
Fy(q) =1+ b16p + ébg(ég — (62)) + bs(s® — (8)) +...
L J
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(Effective) Perturbation Theory: Dynamics

Galaxy (Or Not)

Caveat: galaxy clustering is
nonlocal in time! Everything forms |~
over ~ Hubble time.

However, these nonlocalities can /
be factored order-by-order as well. £

Of course, need to marginalize
over small scales here as well. | e

Ry,

- Initial
Perturbation
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Why Perturbation Theory?

Perturbation theory provides clean predictions for redshift-space
statistics, pre- and post-reconstruction.

As an effective theory, robust to any small-scale physics. No additional
assumptions about galaxies, halos etc. needed.

Consistent predictions of power spectra and correlation functions on
large scales using same model and parameters.
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What about small scales?

A nice feature about effective perturbation theories is that they “know”
where the large-scale cosmological information lives.

2000 For example, amplitude (og )
constraints mostly come from

large scales k < 0.1 h/Mpc.
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Lagrangian Perturbation Theory

In our analysis we specifically use LPT:

- Pre-recon 2pt function from velocileptors (Chen, Vlah, Castorina and
White 2021)

- Post-recon damping via Zeldovich (Chen, Vlah and White 2019)

LPT models structure formation by following displacements, i.e.
trajectories, of fluid elements. Useful for understanding:

- RSD: velocities are just time derivatives
- BAO: nonlinear damping of BAO due to exactly these displacements

By the way: velocileptors also does velocity statistics, Eulerian EFT, etc. and is free! https://github.com/sfschen/velocileptors
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Does it work...
... in both configuration and Fourier space vs. simulations?
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Does it work...

... for cosmological constraints, e.g. in a
blind challenge?
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Reliable constraints on cosmological parameters out to high k., using blind challenge
data (volume = 100x BOSS) from Nishimichi (2020), comparable to CLASS-PT, PyBird.
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Application to BOSS
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BAO live in configuration space (like us)

Issue: Pre- and post-reconstruction 2pt T ’ H
functions are highly correlated, especially at =~ _ o 4 T

T g g

low k where nonlinearities are small—
potential source of numerical issues.
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peak is cleanly isolated in configuration B0ss23
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Final Plan:

Boltzmann Code
LPT

=

Cosmology

Nonlinear Clustering

(ﬂmrHOJ |n(1010 As”

Q.. Hy, In(101° A/) Two Point Functions:
Pre-Reconstruction P,
Fixed spectral tilt, neutrino mass, Post-Reconstruction §;

baryon density

Observation

=

Observed Data

Binned and Windowed P,
Binned §
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Results with and without BAO
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Consistency Tests
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A note about og and window functions

While this work was still in progress we noticed something odd:

The consistency check between power spectra and correlation
functions was failing: power spectra consistently returned lower oz =
0.72 in line with what other EFT-minded BOSS papers found (lvanov et
al. (2020), D’Amico et al. (2020)).

Coincidentally, Pat Mcdonald told us he had discovered a normalization
inconsistency* in the published BOSS data at the 10% level = in linear
theory this translates to a 5% difference in fog!

Recently confirmed by Zhang et. al. Eulerian EFT analysis of BOSS
correlation functions.

ACariection @ appear in Beutler and Mcdonald (2021), data already updated on website.

Pirsa: 21110019 Page 36/41



This method generalizes easily to

nonstandard physics:
Examples: Tl
1. “Relative velocity effect”: o
features due to relative 2 10°;
perturbations between s
baryons and dark matter IS |
(arXiv: 190300437) o k [h M;S—_ll] New BAO Shlgopes from Dark
Matter-Baryon Perturbations
2. Inflationary Features/Early ; £
Dark Energy (arXiv:2007.00704) = e
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The next frontier: RSD x Lensing!

Flip side to earlier figure: RSD and lensing probe
different degeneracies and will be powerful
together!

B BEOSS
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Planck

Same LPT calculations also consistently predict _
lensing statistics, leading way to joint analysis of | ~ \
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First step: DESI (Legacy Imaging Survey) LRGs x Planck
(with Martin White, Rongpu Zhou, Joe DeRose and Nick Kokron).

Planck
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Stay tuned for supplemental sample, emulator and field-level papers!

arXiv:2111.09898
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What about small scales?

Lensing/imaging surveys often require theory
well-behaved at smaller scales than PT.

Solution: combine symmetries-based biased
expansion in LPT with exact dynamics of n-body
simulations (Modi, SC, White 2019).

Scheme has same free parameters as LPT model,
cosmology dependence with collaborators in
Kokron et al. (2021), also Hadzhiyska et al.
(2021), Zennaro et al. (2021)

(1. Construct Lagrangian fields from ]CH)

I‘_'E..; I".-ﬂ-l 'q ¥ l e l 3
St s s =
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2. Advect particles weighted by
Lagrangian field values.
] B |- %
s b o
£ =

w1 [3. Compute cross-spectra
™ between advected fields.

https://github.com/kokron/anzu
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Conclusions

* It’s possible to forward model RSD + BAO without going through
templates/computing covariances of model-dependent statistics.

* One benefit of having one model for everything is that it makes
apples-to-apples comparisons and systematic checks easier...

* (Lagrangian) perturbation theory is a reliable tool to model large-scale
clustering, including future analyses combining redshift and lensing
surveys.
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