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Problem description: causal compatibility

Introduction

@ Correlation vs. Causation

@ Can a causal structure be deduced just from the observed
statistics?

@ |Important in medicine, economics, physics
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Problem description: causal compatibility
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Problem description: causal compatibility

Classical vs. Quantum causal structures

Z Y Pca Pec

(&, b, ©) Z P(a|xz)P(b|xy)P(c|yz)P(x)P(y)P(z)
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Problem description: causal compatibility

Classical vs. Quantum causal structures

Z Y Pca Pec

5 ifa=b=c,

PGHz(A:a,B:b,C:C):
0O else.

[1] E. Wolfe, R. W. Spekkens, T. Fritz, Journal of Causal Inference 7 (2019)
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Problem description: causal compatibility

The quantum compatibility problem

Problem: Approximate quantum causal compatibility

Given € > 0, a causal structure and a probability distribution
over observable variables P, determine whether there exists a
distribution P that can be produced by a quantum description of
the causal structure such that ||P — P||2 < e.

y

Main result

There is a hierarchy of semidefinite programming relaxations
for the approximate quantum causal compatibility problem,

N which is complete in the sense that it can detect any
incompatible distribution with measurement operators of a
given Schmidt rank r.
Every compatible P can be arbitrarily well approximated by a
finite Schmidt rank model.

/

= == - ~
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Problem description: causal compatibility

How to tackle the problem

It's difficult!
@ For a long time unclear what to do
@ Is it even decidable?
@ Inflation technique’
@ Complete hierarchy of LPs in the classical case?
@ Quantum inflation technique®

! E. Wolfe, R.W. Spekkens, T. Fritz, Journal of Causal Inference 7 (2019) [1]
2M. Navascués, E. Wolfe, Journal of Causal Inference 8, 70 (2020)[2]
3E. Wolfe, et al., Physical Review X 11, 021043 (2021)[3]
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Problem description: causal compatibility

Causal compatibility

Given P(A, B, C), are there:
A —> B o POVMs {E.), {Fp), {Ge)
@ p=pAB® pPBCc @ PCA

Pca Pec
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Problem description: causal compatibility

Independence

Problem: To describe independence we need product states!
@ Difficult set to handle
@ Not a convex set

Idea: Relaxation via symmetry 4

4E. Wolfe, R.W. Spekkens, T. Fritz, Journal of Causal Inference 7 (2019) [1]

Pirsa: 21110018 Page 13/37



Inflation & NPO
@000

Inflation

If P is compatible, there exists

an inflated causal structure
<« T B with:
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Inflation

If P is compatible, there exists
p2 an inflated causal structure

AB
A <« " T B with:
= PaB e @ n copies of the latent
systems

@ n? copies of the POVMs:
Pt Pzo {E}. (F}}. {G

@ Permutation symmetry:
e.g. p(E5'Fp' G') =

C p(Es*F5' G')
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Inflation & NPO
@000

Inflation

If P is compatible, there exists
an inflated causal structure
with:
@ n copies of the latent
systems
@ n? copies of the POVMs:
{Ea}, {Fp} {Ge
@ Permutation symmetry:
e.g. p(ENVFITGL) =
p(Ea*F5' Gg')
Can one decide this?
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Inflation & NPO
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Non-commutative polynomial optimization (NPO) °

Hierarchy of semidefinite programs (SDPs)

For the triangle scenario:
Input: P(A,B,C) and n
Output: Operators {E!}, {F!}, {G!} and a state p on their
algebra such that
@ p has permutation invariance over n levels of inflation

w ® P(a,b.c)=p(Ey'F,' Gt')

58. Pironio, M. Navascués, A. Acin, SIAM Journal on Optimization 20; 2157 (2010) [4]
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To do’s

@ Converging SDP hierarchy for quantum problems
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Inflation & NPO
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To do’s

@ Converging SDP hierarchy for quantum problems v NPO

@ Deduce independence from symmetry = Fitting de
Finetti theorem

© Make sure the quantum model of NPO is such that the
observables of Alice, Bob and Charlie factorize in the first
place!
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De Finetti Theorem
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(Quantum) de Finetti Theorems

Permutation invariant states
k
p®k7 Z plp(lg)
i

Ll
V2

Subsystems will be equally entangled with each other and
therefore “not very entangled”. For example:

67 = —=(10...0)+[1...1))

N 0¥ = Tregr ([0 X0"]) = T /28

Many versions exist, but none fit our purpose
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De Finetti Theorem
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Hilbert space vs Commuting observable algebras

@ Hilbert space tensor product

©@ Commuting observable algebras

6Ji etal., MIP* = RE, arxiv:2001.04383 (2020) [5]
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Hilbert space vs Commuting observable algebras

@ Hilbert space tensor product

e Associate to each subsystem a Hilbert space 7,

e The joint Hilbert spaceis e.g. Hi2 = H1 ® Ho

e Operators from A; = L(H;) are embedded into
Ajz2 = L(H12) by padding with identities

©@ Commuting observable algebras

e Associate to each subsystem an observable algebra A;
e The joint system is an algebra A+», which has A4, A, as
M commuting subalgebras

These descriptions are not the same!®
We need a de Finetti theorem for the second model.

6Ji etal., MIP* = RE, arxiv:2001.04383 (2020) [5]
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De Finetti Theorem
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Max tensor product Quantum de Finetti Theorem

Theorem (Extension of [6] to the max tensor product)

Let p be a symmetric state on an infinite maximal tensor product

. n
D® = |im D%max,
n—oo

Then there exists a unique probability measure du over states
on D such that for all x € D,

o(x) = / M, (x) du(o).

where [, Is the infinite symmetric product state on D*>°
associated to the state o on D. )

[6] G. Raggio, R. Werner, Helv. Phys. Acta 62 (1989)
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De Finetti Theorem
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@ Converging SDP hierarchy for quantum problems v NPO

@ Deduce independence from symmetry = Fitting de Finetti
theorem v/

© Make sure the guantum model of NPO is such that the
observables of Alice, Bob and Charlie factorize in the
first place!

irsa: 21110018

Page 24/37



The new inflation hierarchy C
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Local subsystems

From the original inflation

NPO of Wolfe et al. one gets NS __>B
o POVMs {EJ}, {F!}, {G]
@ Permutation invariant p

We want for: Pca PBC

A € A, B, € By, CL e Cy,
Ar € Ap, Br € Bpr, CprE€Cpm, CeC

p(ALARBLBRCCR) = p(CrAL)p(ARBL)p(BrCL)
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The new inflation hierarchy C
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Independence and NPO

pP(ALARB.BRC CR) = p(CrAL)p(ARBL)p(BrCL),

The independence property is defined in terms of observ-
ables that are not being measured!

Local operators do not obviously come out of the original
inflation NPO
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The new inflation hierarchy C
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Modified inflation NPO

Ask NPO to find generators
@ ej(a,a)e A, a=1,...,r
@ ex(aa)e Ay, a=1,...,r1
such that

,
El=) ej(aa)ex(an)
a=1 @
Always possible for some r if P is
compatible, because (A} - Ap) is
dense in A"
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The new inflation hierarchy C
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@ Converging SDP hierarchy for quantum problems v NPO

@ Deduce independence from symmetry = Fitting de Finetti
theorem v/

© Make sure the guantum model of NPO is such that the
observables of Alice, Bob and Charlie factorize in the
first place!
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The new inflation hierarchy
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Convergence

@ If NPO succeeds for level n, we know there exists a state p
that is symmetric over all permutations of n copies

@ Using the De Finetti theorem, we can then show that for
n — oo there also exists a product state o, for which

P(a,b,c) = o(Ey' Fy' Gg')

@ We are guaranteed to solve the approximate causal
compatibility problem for any ¢ for large enough values of r.

If NPO returns ”infeasible” for given r and any n, we can
conclude there exists no quantum model of the causal structure
with measurement operators of rank r that produces P
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Remarks

There is a price to pay:
@ Additional parameter r

@ The convergence for increasing values of r and nis
non-monotonous

Pirsa: 21110018 Page 30/37



Conclusions and Outlook
(Yo)

Summary

We have

@ described causal structures in terms of commuting
algebras

@ proven a quantum de Finetti Theorem

@ shown that there exists a converging SDP hierarchy for the
causal compatibility problem
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Conclusions and Outlook
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Open questions

@ Bounds for, or scaling with, r

@ Other ways to identify local algebras

@ Is the original hierarchy of Wolfe et al. convergent?
@ Numerical methods
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. Extra slide
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Norm bound C

The generators ¢;(a, a), etc. are not automatically bounded.
Therefore we add the constraints

C°I - er(a,n)*er(a,a) > 0,

for some large value of C.
@ C is another (inexpensive) parameter of the SDP
@ It might be possible to choose C =1
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as well as the permutation symmetry constraints. Furthermore, the unitaries commute with all of Alice’s operators. These
constraints should thus be added to the definition of the C'*-algebra with which we describe the causal structure.

The unitaries U7 immediately fit nicely in our framework, since they only carry one inflation index j, are bounded by Eq. (57)
and obey the symmetry constraints. In this particular example, they can be added as additional generators to the algebra B; @
C; of the j’th copy of B and C. Theommmand Lemma @ are then still applicable and the causal structure can be treated by
our model. Theorem[12]and Corollary [14] then show that the SDP finds the correct solution to the causal compatibility problem
if one creates an objective function similar to Eq out of equalities of the form of Eq. (56).

24

In the case where a latent variable has only latent parents, one can define unitaries without the classical control variable and
perform the same procedure. For more difficult causal structures, where two or more quantum systems come together to form a
non-exogenous quantum system, one can define several such (controlled) unitaries, specifying on which subsystems they act by
including their commutation relations as constraints in the SDP.

With this slightly altered version of the formalism, one can thus still solve causal polynomial optimization and the causal
compatibility problem. Hence, our approach is applicable to all causal structures that can be represented by a DAG.

827x11.69in
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IG. 19. Inequivalent state generating procedures. (a) de
icts a two-layer state generating procedure, whereas (b) al

ows for the application of an arbitrary Bob-Charlie channel.
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as well as the permutation symmetry constraints. Furthermore, the unitaries commute with all of Alice’s operators. These
constraints should thus be added to the definition of the C'*-algebra with which we describe the causal structure.

The unitaries U7 immediately fit nicely in our framework, since they only carry one inflation index j, are bounded by Eq. (57)
and obey the symmetry constraints. In this particular example, they can be added as additional generators to the algebra B; @,
C; of the j’th copy of B and C. Theommmand Lemma @ are then still applicable and the causal structure can be treated by
our model. Theorem[12]and Corollary [14] then show that the SDP finds the correct solution to the causal compatibility problem
if one creates an objective function similar to Eq out of equalities of the form of Eq. (56).

24

In the case where a latent variable has only latent parents, one can define unitaries without the classical control variable and
perforgn the same procedure. For more difficult causal structures, where two or more quantum sysiems come together to form a
non-exogenous quantum system, one can define several such (controlled) unitaries, specifying on which subsystems they act by
including their commutation relations as constraints in the SDP.

With this slightly altered version of the formalism, one can thus still solve causal polynomial optimization and the causal
compatibility problem. Hence, our approach is applicable to all causal structures that can be represented by a DAG.
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