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Abstract: We will discuss quantum singular value transformation (QSVT), a ssimple unifying framework for quantum linear algebra algorithms
developed by Gilyén, Low, Su, and Wiebe. QSVT is often applied to try to achieve quantum speedups for machine learning problems. We will see
the typical structure of such an application, the barriers to achieving super-polynomial quantum speedup, and the state of the literature that's
attempting to bypass these barriers. Along the way, we'll also see an interesting connection between quantum linear algebra and classical sampling
and sketching algorithms(explored in the form of "quantum-inspired" classical algorithms).
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What kinds of speedups can be gained from quantum computers?

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please Navigauon

emaill me al stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the

repository on github.) Your help is appreciated and will be acknowledged. Algebraic & Mumber Theorelic

Algebraic and Number Theoretic Algorithms Approximation and Simulation
DplimuFaten, Mumencs, & Machine Learmng

Algorithm: Factoring Acknovdedoments

Speedup: Superpolynomial Referen

Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor

solves this in O{nﬁj time [82.125]. The fastest known classical algorithm for integer factarization is Translations

the nensral nimber field siewe whirh iz helisved o nimnin time 'Jﬂ':"l ) The he<t rinoranehy nrmeen

Source: quantumalgorithmzoo.org
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Applications of quantum computing

1981 [Feynman] Quantum simulation
1994 [Shor] Crypto-analysis (factoring, discrete log)
1996 [Grover] Unstructured search
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Applications of quantum computing

1981 [Feynman] Quantum simulation
1994 [Shor] Crypto-analysis (factoring, discrete log)
1996 [Grover] Unstructured search

2009 [Harrow, Hassidim, Lloyd] Machine-learning?
Lineor hl%bhrﬂu

Pirsa: 21100052 Page 5/39



11210 AM Wed Oct 27 & = 100% ¥

Guiding question: when can quantum computing speed up linear algebra tasks?

This question:
P seems natural

» reflects a hope for exponential speedup that drives some of the hype behind quantum computing
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Talk overview

We will discuss three lines of work in quantum computing in broad terms:

1. A framework that unifies many quantum algorithms by viewing them from a linear algebraic
perspective

2. A series of quantum algorithms that apply this framework to solve linear algebraic tasks

3. A series of classical algorithms for linear algebra that can perform as well as the quantum ones,
under certain circumstances

Throughout, we will assume a fault-tolerant circuit-based quantum computer (and later on, even more
hardware).
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Quantum singular value transformation

[Gilyén, Su, Low, Wiebe — Quantum singular value transformation and beyond]
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arXiv.org > quant-ph > arXiv:2105.02859

Quantum Physics

[Submitted on & May 2021 (v1), last revised 20 Aug 2021 (this version, v3)]

A Grand Unification of Quantum Algorithms

John M. Martyn, Zane M. Rossi, Andrew K. Tan, Isaac L. Chuang

“Quantum algorithms offer significant speedups over their classical counterparts for a variety of
problems. The strongest arguments for this advantage are borne by algorithms for quantum search,
quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of
composite quantum algorithms. A number of these quantum algorithms were recently tied together by a
novel technigue known as the quantum singular value transformation (QSVT) [....] This overview
illustrates how QSVT is a single framework comprising the three major quantum algorithms [Shor’s
algorithm, Grover’s algortihm, and Hamiltonian simulation], thus suggesting a grand unification
of quantum algorithms.”
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How to apply a matrix to a quantum state

Consider a matrix A € CV*¥ and a vector v € C". Consider encoding a (nonzero) vector v € CV
into the magnitudes of a quantum state:

and we want the state | Av).

If A is unitary, then we could try to find a circuit implementing it and simply apply it to |v).

v) A

Av)

What about if A isn't unitary?
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How to apply a matrix to a quantum state

Consider a matrix A € CV*¥ and a vector v € C". Consider encoding a (nonzero) vector v € CV
into the magnitudes of a quantum state:

1 Z‘"‘
'r_ | -
and we want the state | Av).

If A isn't unitary, we can still try to find a circuit U such that (rescaling so that || A|| < 1),
=:=?

U = [‘4 j] — A= ((0[°" e NU(0®*RI).

Then, we can do

|0y A=
f
|v)

If the measurement reads |0)““, the bottom state is | Av). This happens with probability
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Block-encodings formalizes these “linear algebraic” unitaries

Definition
We say we have a block-encoding of a matrix A with || A|| < 1 if we can efficiently apply U and U ~ !,
where U/ is a unitary matrix satisfying

U = r‘ :] = A= (0@ DHU(0)°* @ I).

Technical note: assuming U is easy to implement, the “cost” parameter of the block-encoding is 1 /|| A||.
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The fundamental theorem of block-encodings
(aka “quantum singular value transformation”™)

Theorem
Given a block-encoding of (Hermitian) A, we can get a block-encoding of é p(A)," where p is a degree-d
polynomial satisfying

i

max p(x)
re[—1,1]

The size of the quantum circuit implementing :15 p(A) blows up by only a factor of d.

Pirsa: 21100052 Page 13/39

'If p is even or odd, the factor of two can be dropped, and the result can be generalized to non-Hermitian A.



123 AM  Wed Oct 27 @ = 100%
¥

Example: applying QSVT to matrix inversion [HHL09]

Suppose we have a block-encoding of A € C™"*" such that || A|| < 1and ||[A~"|| < &, and copies of
the quantum state |b).

We want |A~1b) = |¢(A)b) where ¢(x) = —.

1
KT

1. Use QSVT to create a block-encoding of p( A), where

plx) — a:,:';:r(.r)| <eforalz e { - 1,— %} U |% ]}

and has degree O(x log(1));
2. Apply p(A) to |b) and post-select to get |p(A)b) ~. |d(A)b) = |A~1b)
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Any Lipschitz function can be approximated by a low-degree polynomial

Jackson’s inequality
Let f: [—1,1] — [~1,1] be L-Lipschitz, i.e. | f(x) — f(y)| < L|x — y| forall z,y € [—1,1].

Then there exists a polynomial p of degree < {— such that

sup |f(x) —p(x)| < Ct¢

re(—1,1]

So, QSVT can be used to perform a wide range of operations in O(log NV ) time, if we have the right
block-encodings.
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There are major barriers when trying to apply QSVT to machine
learning tasks.

[Aaronson — Read the fine print]
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How we evaluate quantum speedups

more linear

T algebra
N

some linear

x = linalg.solve(A, b) §
algebra - |
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some linear % E classical algorithm \_/' ! more linear
 — - - -
algebra — algebra

- PO e ——
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A typical application of quantum linear algebra to machine learning

some linear D classical algorithm more linear
—_— -
algebra algebra

|
] |
I |
I |
I 1
I |
I |
- . I
I 1
: quantum algorithm 1

-

Qv T

1. Encode input matrices as block-encodings; encode input vectors as quantum states;
2. Use QSVT to compute an algebraic expression of the input;
3. Extract information from the output (say, an estimator of a desired value).

Hope: this gives exponential speedups.
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Creating block-encodings

Consider some A € CV*N_ We can get a block-encoding to
> A/sifitis s-sparse with efficiently computable, bounded entries
> A/ Tr(A) ifit can be prepared as a purified density matrix
» A/||Al|g if itis in quantum random access memory*

llall® = 1A

) 1] ‘::- J »
aplc = |JAl1, )" lazl® = ||A(2, - )I*
r"-- g | l-."'--.- 3 Tl
A(1, 1D* + |A(1, 2))° JA(1, 3)]° + |A(1,4)| lA(2, 1| + |A(2. 2))° |A(2,3)]° + |A(2. 4)|°
g pY b - 3 .4 :
S o 4 \ / k-
T o " e '.f_’f ™ 'f.'_’f \\ |
[A(T, 1)) AL, 2)|* AL, 3)° JA(L 4)* A2 1)) A2, 2)) |A(2, 3)|* |A(2, 4)|°
J' L " w L e l
Al1.1) All,2 T 1] Al1.4) 1. 1) 1(2.2) 12,3) W 2.4)
Al1,1) AlL2) 1(1,3) All.4) Al2.1) 1(2.2) Al2,3) 1 2.4]

Figure 1: Dynamic data structure for A € C?**, We compose the data structure for a with the data structure for A’s rows.
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The input problem and the output problem

more linear

algebra
U i
! ! super-fast QSVT! I ! E

some linear x = linalg.solve(A, b) b

algebra
e

N (s sparse
o A 15w QR AM

-

copies of b} cdpiés: of
circuit U encoding A Ix) = |Ab)
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The input problem and the output problem

some linear x = linalg.solve(A, b)
—_— ! - !
algebra e

N is sparse
o A 15 W QR AM

more linear

algebra
! ! super-fast QSVT! ! !

.

cnpies of |b) cc:-'pﬁe's.ﬂ of
circuit U encoding A x) = |A"'b)
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Take-aways

“Quantum computers are slow in reading data... Quantum computers will excel for big-compute problems
on small data" —slide from Matthias Troyer's talk “Disentangling hype from reality”

» Though quantum computers implicitly perform extremely fast linear algebra, it's not clear if this
could give broad speedups to linear algebra calculations.

» Current hopes in this discussion rely on (1) speculative quantum hardware and (2) finding the right
application where it suffices to have very weak access to an output vector
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Landscape: exponential speedups in quantum machine learning

sparse linear

_ supervised
el Ll clustering [LMR13]
data fitting P
[WBL12] principal component
analysis [LMR14] support-vector

machines [RML14]

electromagnetic

scattering [CJS13] low-rank matrix

semidefinite decomposition
programming [RSML18]
[BKLLSW17]

- better candidate for exponential quantum speedup -
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Landscape: exponential speedups in quantum machine learning

sparse linear

; supervised
el L clustering [LMR13]
data fitting . ol
[WBL12] principal component
analysis [LMR14] support-vector

machines [RML14]

electromagnetic

scattering [CJS13] low-rank matrix

semidefinite decomposition
programming [RSML18]
[BKLLSW17]

factoring [Shor97]

- better candidate for exponential quantum speedup -
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Landscape: exponential speedups in quantum machine learning

sparse linear

_ supervised
Pregrarinng ke clustering [LMR13]
data fitting ks
[WBL12] principal component
analysis [LMR14] support-vector

machines [RML14]

electromagnetic

scattering [CJS13] low-rank matrix

semidefinite decomposition
programming [RSML18]
[BKLLSW17]

recommendation
systems [KP17]

[Tang19]

. better candidate for exponential quantum speedup —
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Landscape: exponential speedups in quantum machine learning

sparse linear supervised
programming [HHLO09] cluster!?ng [LMR13]
[Tang18]
data fitting = P
[WBL12] principal component
analysis [LMR14] support-vector
[Tang18] machines [RML14]
[DBH19]

electromagnetic

scattering [CJS13] low-rank matrix

semidefinite decomposition

programming [RSML18]
[BKLLSW17] [GLT18; CLW18]
[CLLW19]
recommendation
systems [KP17]
[Tang19]

. better candidate for exponential quantum speedup —
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Sparsity-based QSVT

sparse linear
programming [HHLO09]

data fitting
[WBL12]

electromagnetic
scattering [CJS13]

Pirsa: 21100052

semidefinite

programming
[BKLLSW17]
[CLLW19]

QRAM-based QSVT

supervised
clustering [LMR13]

[Tang18]

principal component

analysis [LMR14]
[Tang18] machines [RML14]

support-vector

[DBH19]

low-rank matrix

decomposition
[RSML18]

[GLT18; CLW18]

recommendation
systems [KP17]

[Tang19]

. better candidate for exponential quantum speedup —
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A classical analogue to the QSVT framework

We define the notion of sampling and query access, which serves as the analogue to the block-encoding.

QSVT [GSLW19] QI-SVT
» Get block-encodingsto A, ..., Ay. > GetSQ,, (A41),...,5Q,, (Ak).
» Get a block-encoding for A where A is some > Get SQ,  (A) where A is some smooth
bounded low-degree polynomial of the input. function of the input.
» Apply to |b) to get | Ab). > Apply to SQ_, (b) to get SQ,,(Ab).

This framework captures the capabilities of QRAM-based QSVT, giving strong evidence that quantum
linear algebra based on QRAM admits no exponential speedups.
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A classical analogue to the QSVT framework

We define the notion of sampling and query access, which serves as the analogue to the block-encoding.

QSVT [GSLW19] QI-SVT
» Get block-encodingsto Ay, .... Ay. b Gt 3Q,, (A1),..-,8Q,,. (Ar).
» Get a block-encoding for A where A is some > Get SQ,  (A) where A is some smooth
bounded low-degree polynomial of the input. function of the input.
» Apply to |b) to get | Ab). > Apply to SQ_, (b) to get SQ,,(Ab).

This framework captures the capabilities of QRAM-based QSVT, giving strong evidence that quantum
linear algebra based on QRAM admits no exponential speedups.
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How to think of dequantized algorithms

Can we perform a classical version of the quantum algorithm, using a /ittle bit of information from the
quantum input assumptions (e.g. measurements of input quantum states)?

x = qsolve(A, b,
measurements) | gx.csv Wibre Thrida
- _—
o3 ey B - . algEbra

2 )

! !| super-fast QSVT! ! !

some linear
algebra

copies of b} Golpies of
circuit U encoding A 1X) = |Ab)
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Toy example: dequantizing the swap test

W Ve @M ]\u\l‘eliv“"i Lapur ulj‘u’; measucevents b [y
h.h&avfﬁm:
: NG
[~ pull o %mﬂ’fvu ¢ WP l""*.\

E u, V \ dequantized swap test  ,qtimate of recd W Vi
— TV o € ever [ )

S owvi
! g I‘e;l_ [ ]H..[IJL
i U\;U,_‘ i i !
S £l ZRGM" =l
L swap test Varlz12 72 ( Viwlle 1
O(’%f 103 l\‘u}
ies of |u)
EE‘;Z gf Iv) ) do ’}jl +vey and Oukout i Ovege
{]G Hu 2'3
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Quantum-inspired algorithms exploit sampling strategies familiar to the
classical algorithms literature

Well-known observation
Born rule-type measurements speed up machine learning and randomized linear algebra [SWZ16;
HKS11; KV17; DMMO08; FKV98]
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Take-away

The best hope for exponential quantum speedups from QSVT is when the input matrices are sparse.

Note the limitations of this result:
» Algorithms are relatively impractical compared to existing classical algorithms

P Leaves open the possibility of large polynomial speedups
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Some interesting directions forward
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Take-away

The best hope for exponential quantum speedups from QSVT is when the input matrices are sparse.

Note the limitations of this result:
P Algorithms are relatively impractical compared to existing classical algorithms

P Leaves open the possibility of large polynomial speedups
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How big is the polynomial quantum speedup for QSVT really?

P Getting better quantum-inspired algorithms for regression via optimization

[Gilyén, Song, Tang — An improved quantum-inspired algorithm for linear regression]
[Shao, Montanaro — Faster quantum-inspired algorithms for solving linear systems]

> Making the correspondence between QSVT and QI-SVT cleaner
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What possibilities for super-polynomial quantum speedup for QML are
left?

> Topological data analysis

[Lloyd, Garnerone, Zanardi — Quantum algorithms for topological and geometric analysis of data
[Gunn, Karnerup — Review of a quantum algorithm for Betti numbers]
[Gyurik, Cade, Dunjko — Towards quantum advantage via topological data analysis]

» Gaussian process regression
[Zhao, Fitzsimons, Fitzsimons — Quantum-assisted Gaussian process regression]

> Sampling optimized random features
[Yamasaki, Subramanian, Sonoda, Koashi - Learning with optimized random features]

Could QSVT be avoided entirely? Is there another method for block-encoding that avoids these issues?
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Thank you!
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