Title: Aspects of ghost-free nonlocal field theories
Speakers: Luca Buoninfante

Series. Quantum Gravity

Date: October 28, 2021 - 9:30 AM

URL.: https://pirsa.org/21100048

Abstract: In thistalk | introduce nonlocal (infinite derivative) field theories. First of al, | discuss how and which principles of quantum field theory
are affected when higher-order derivative operators are taken into account in a Lagrangian. In particular, | focus on the issue of unitarity and on how
to make higher-derivative theories healthy by means of non-polynomial differential operators. | extend the treatment to the gravity sector and
consider nonlocal theories whose graviton propagators are ghost-free, and explore the possibility of regularizing singularities. Next, | discuss some
recent progress in proving perturbative unitarity for avery general class of nonlocal field theories. Finaly, | will make some remarks on nonlocality
and quantum gravity.

Pirsa: 21100048 Page 1/64



22:43 Thu Oct 28
talk-Pl_Buoninfante -

talk=Pl_Buoninfants

Aspects of ghost-free nonlocal field theories

Luca Buoninfante

In collaboration with
A.S. Kashelev, G. Lambiase, J. Marto,
A. Mazumdar, M. Yamaguchi,...

Quantum Gravity Seminar

Perimeter Institute @Zoom
28th October 2021

SRR T AR %

Tokyo Institute of Technology




22:34 Thu Oct 28

talk-Pl_Buoninfante ~

talk=-Pl_Buoninfante

Introduction & motivations

L]

Einstein’s general relativity (GR) has been tested to very

high precision in the IR regime; R ]61H(_fd4xﬁﬂ

Despite the great succes of GR, there are still open
problems that make the theory incomplete in the UV

regime, e.g. Blackhole and Cosmological singularities,
non-renormalizability rt hooft & veltmann (1974); Goroff & Sagnotti (1985)]

To what extent is GR valid in the UV?

The inverse-square |law of Newton’s potential has been
tested only up to ~10um with torsion balance
experiments.
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4th order gravity

« The 4th order gravitational action quadratic in the curvature is
power-counting renormalizable:

1

AT

fd"x V=9(R + aR? + BR,,RH)

« Unitarity is violated at the tree-level: uv = My + V8IG hyy

PO P2 mgy = (3a + £)~1/?

g — e i 1 _]K‘E
2k2+mi , k% +mi’ G (—?_.ﬁ)

M(k) = Mgg +

Spin-2 ghost degree of freedom

+ Conflict: Unitarity VS Renormalizability!

ICtalla 1077 pRAl P3
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4th order gravity

« The 4th order gravitational action quadratic in the curvature is
power-counting renormalizable: rJ >

1

S= Tene

fd"x V=9(R + aR? + BR,,RH)

« Unitarity is violated at the tree-level: uv = My + V8IG hyy

my = (3a + g)~1/?

| - -1 /3
TR = TL.-p i : i /
(k) = Mg 2 k2 +m? My &= (—Eﬁ)

Spin-2 ghost degree of freedom

« Conflict: Unitarity VS Renormalizability!

ICtalla 1077 pRAl P3
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4th order gravity

« The 4th order gravitational action quadratic in the curvature is
power-counting renormalizable: rJ "

1
— 4 af— 2

« Unitarity is violated at the tree-level: Guv = Ny + VBTG hyy

my = (3a + B)~1/?
! -1/2
m = (~36)

Spin-2 ghost degree of freedom

« Conflict: Unitarity VS Renormalizability!

[Ctalla 1077 pRAl P3
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4th order gravity

« The 4th order gravitational action quadratic in the curvature is
power-counting renormalizable: o -

MP A

1

S= Tene

fd"xd_—g(fﬂ + aR? + fR,, R*)

« Unitarity is violated at the tree-level: uv = My + V8IG hyy

my = (3a + g)~1/?

! -1/2
TS = T, i o S— - e /
(k) = Mg 2 k? +m;§l k? +m3 g = (“Eﬁ)

Spin-2 ghost degree of freedom

« Conflict: Unitarity VS Renormalizability!

[Ctalla 1077 pRAl Pd
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Unitarity VS Renormalizability

* Einstein’s GR is unitary but non-renormalizable, while 4th
order quadratic gravity is power-counting renormalizable but
non-unitary!

Several (recent) attempts:

Asymptnticaily safe gravity [Reuter, Eichhorn, Saueressig, Platania, Knorr......]

4th order gravity with Fakeons [anselmi & piva 20174]

4th order gravity with unstable QhDStS [Donoghue, Menezes, Salvio, Strumia...]

Lee-Wick gravity theories [Modesto & Shapiro 2016+; Anselmi & Piva 2017+4]

Nonlocal gravity theories [Born, Pais, Yukawa, Efimov, Krasnikov, Kuz'min, Moffat,
Woodard, Tomboulis, Dragovich, Aref’eva, Volovich, Koshelev, Siegel, Biswas, Mazumdar, Modesto, Frolow,
Zelnikov, Rachwal, Starobinsky, Kumar, Tokareva, Boos,......]




22:44 Thu Oct 28
talk-PI_Buoninfante ~

talk-Rl_Buoninfante

Ghosts

+ 4-derivative theory (-+++): GHOST!

~

p2 —ie p2+m?—ie

&
2

L=7¢n(1- )¢ -V(#) = Np)=—r
2 ‘ )= p2

m

Optical theorem:

StS=1, S=1+iT = 2m{T}=T*'T ("=0"

«  Tree-level amplitude: '; P z

Im{T} = n0(p*)[6(p?) — §(p? +m?)]

It can be negative: violation of unitarity!
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Beyond 4-derivative theories

4-derivative theory (-+++): GHOST!

a

p?—ie p?+m?—ie

O
2

L=¢0(1- )¢ -V(#) = NE)=—
2 ‘ 2

m

Generalized higher-derivative theory:

1 1
F(-p?) p* + m?

i %wn)m —mp = ilp)=

Question: Is there any higher-derivative operator F(—p?®)
such that the propagator is ghost-free? YES!

Nonlocality can help us!
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Local VS Nonlocal

« Local (polynomial) Lagrangians:
ma

L, =L, (p,0¢p,0%¢,..,0"¢)

« Nonlocal (non-polynomial) Lagrangians:

1
I’NL = ‘E’NL (fb, a¢, 52(},'), i 5”(}!), ] €D¢), ln(D) (p,afb, )
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Local VS Nonlocal

« Local (polynomial) Lagrangians:

‘EL — LL(qbra(ﬁ:aqu: ven ) a”@)

« Nonlocal (non-polynomial) Lagrangians:

1
Ly, = Lyy, ('?5, d¢p,0%9, ..., 0", In(D) = )
@eldtheow and p@

[Witten, Freund, Zwiebach, Aref’eva, Volovich,
Dragovich, Koshelev, 5en, Siegel,....]
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Generalized higher-derivative Lagrangian

Scalar field Lagrangian:

1
L=-5¢F(D)¢ -V(¢),
‘\_, Entire function

(good IR limit F(0O) —» —0O + m?)

Weierstrass’ theorem:

N
F(O) =e7® ﬂ(—lﬂ +mf)', N<o»,
=1

y(O) is another entire function.

N is the number of zeroes m?; r; is the multiplicity of each zero
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Generalized higher-derivative Lagrangian

Scalar field Lagrangian:

1
L= —EfPF(D)cP -V (¢),

\\ Entire function

(good IR limit F(0O) —» —0O + m?)

Weierstrass’ theorem:

N
F(O) = e v H(—I:I +m?) ",
=1

Propagator:

€
M-pt)=———
P

| ——
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Generalized higher-derivative Lagrangians

N
F(O)=ev® H(—-D +m?)"
i=1

s Nm]l, nn=1 yv(O)=»i
= infinite-derivative theory with one real zero
F(O) = e YO (-0 + m?)

 Propagator:

e¥(-p?)

11 = —
iGN p2 +m? —ie
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Nonlocal Lagrangian

« Nonlocal scalar field:

L= 2ger D@ - m2)p - V()

N=co

y(O/M3) = Z ¥n (%) e W

n=0
« Ghost-free propagator: No extra poles!

Entire function:

EV[:'IJEKM::‘F{)

p2+m2

M) =

Perturbative unitarity (optical theorem and Cutkosky rules)
[Pius & Sen 2015; Briscese & Modesto 2018; Chin & Tomboulis 2018]

Causality violation at microscopic scales (acausal Green functions and

local commutativity violation)
[Tomboulis 2015; LB, Lambiase, Mazumdar 2018])
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Generalized quadratic action

Locality, causality, unitarity, renormalizability, positive norms,
positive energies... too many requirements?

Beyond fourth-order derivatives? Diffeomorphism invariance
allows more...

Generalized quadratic gravitational action, parity-invariant and
torsion-free:

1

S =3en t 350

f d*x =G (R, (DR + Ry Fy (DR + Ry Fy (D)RFVP)

N=co

i
0
Fi(o/Mg) = Z fin (E) ) [N = 0 Nonlocal]
n=0 3
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Nonlocal Lagrangian

+ Nonlocal scalar field:

£ %fpe-ﬂwﬁ)(a —m2)p — V(¢),

N=oo

]”'(D/M.'}?) == Z ¥n (%) \

n=0
« Ghost-free propagator: No extra poles!

Entire function:

EV[:'IJE.HME)

pE _I_mE

M(p) =

Perturbative unitarity (optical theorem and Cutkosky rules)

[Pius & Sen 2015; Briscese & Modesto 2018; Chin & Tomboulis 2018]

Causality violation at microscopic scales (acausal Green functions and
local commutativity violation)

[Tomboulis 2015; LB, Lambiase, Mazumdar 2018]
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Microcausality violation

* NO time-ordered propagator:

e 7@ (O - mA(x) = id™@(x),

e (x) = (T{¢p(x)p(0)})

o0

j4-1 =
Maele) = £ ), —= 04V W) = W@ (=)
g=1

I(x) = M (x) + I,,.(x),

(@ -v(-k?)
) 0(a)

W(q}{'x) iy f%eikig“{ﬂ)a(kz _I_mz)
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Generalized quadratic action

Locality, causality, unitarity, renormalizability, positive norms,
positive energies... too many requirements?

Beyond fourth-order derivatives? Diffeomorphism invariance
allows more...

Generalized quadratic gravitational action, parity-invariant and
torsion-free:

1

S =3en t 350

j d*x y=g(RF,(@)R + Ry Fy(D)RE + Ry pe F3(D)RHVPO)

N=co

it
DO
F(o/M?) = Z fin (E) , [N = o0 Nonlocal]
n=0 d
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Generalized quadratic action

S =

L ]

Generalized quadratic gravitational action, parity-invariant and
torsion-free:

Sgn + mf d*x =g(RF1(D)R + Ry, F, (DR + Ry pe F3(O)R¥VPY)

By using the identity

RyvpeO"RFVPY = 4R, O"R¥Y — RO"R + O(R?) + tot. div.

We can write

| ,
S =Sgu+ 55— | d*x+v=g (RSFI(D)R + Ry, Fo (D)RHY + U(R-‘))
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Generalized quadratic action

* Generalized quadratic gravitational action, parity-invariant and
torsion-free:

5= Sgy + —f d*x /= (H‘L (DR + RuvF (O)R™Y + ,!{vaﬂ-ﬁl[ﬂ)ffi“’ﬂf")

* By using the identity

Ruype O RIVPT = 4R, O"R¥Y — ROMR + O(R?) + tot. div.
| Y )
o) ~ Ok

1 ,
S = Sgn + 55— | d*xv=g (RFLOR + Ry F2(DR¥ + 0(R?))

* We can write
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Generalized graviton propagator

* Up to quadratic order around Minkowski the relevant part of the
action is:

1
S =Sey + — d*x =g(RF;(D)R + R, F>(O)R*")

* Gauge independent part of the graviton propagator:

2 0
:F:.u vpa P,uwm

T FOOk2 T (Flk) = 3g(k))k?

n;wpnr(k)

1
fO)=1+ E:FE(D)D.

g(@) =1-2F,(0)o - %TFE(D)D
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Ghost-free higher derivative gravity

Up to quadratic order around Minkowski the relevant part of the
action is:

1
S =8gy + ﬁ d*x 1;"—9'(1‘??] (D)R + R;WFE(D)RHV)

Gauge independent part of the graviton propagator:

2 )
nﬂppg(k) N Puvpc:r ﬂiv,{m

 fUk? T (f(k) — 3g(k))k?

Ghost-freeness condition:

f(k) = e, f(k)—3g(k) = ET“*“”U{"" + mg),

L

. Entire functions _
[Biswas et al., PRL 2012]

Pag
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N
! y

Ghost-free higher derivative gravity

« Nonlocal higher-derivative gravity theories can be ghost-free;
also known as Infinite Derivative Gravity (IDG)

5= f d*x y=G(R + G FORM),  Fyp(O) = —2F, (D) = F(O) =

f{0) -1
16 O

« Ghost-free propagator:

1 _ 1 ‘?:?L-{%L"{Hf "P_HUUJHT

f(@) = e7v(O/Ms)
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Ghost-free higher derivative gravity

« Non-local higher derivative theories can be ghost-free:

1 -y(o/M2) _ 1

§ = f d*x y=g(R + G, F(O)R™),  F(O)=-

O

« Ghost-free propagator:

s .f : H'I.r'ﬂff lu'l.p"ﬂlf

« Entire function, e.qg.

_V(DfM ) — E_D!{M.b
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Ghost-free higher derivative gravity

« Non-local higher derivative theories can be ghost-free:

T

O

fd“x\/—_g(ﬂ + G, F(O)R*), F(D)=

« Ghost-free propagator:

[,o(k) = e? X IMIMEE. (1) = e¥(~k*/M) (}

« Entire function, e.qg.

e~Y(O/ME) — o—D/M§
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Ghost-free higher derivative gravity

Up to quadratic order around Minkowski the relevant part of the
action is:

1
S =Sgy + %J’ d*x \=g(RF;(O)R + R, F>(O)R*")

Gauge independent part of the graviton propagator:

2 0
‘PJ.HI;J{‘I ?pwm
nyvpr;r(k) =

T fUOk? T (f(k) — 3g(k))k?

Ghost-freeness condition:

Jfo} - [’F1[k}. Jf('h} — ';{}Uf,] — (?T;:{JHU{E -+ HIE{):

v

» Entire functions _
[Biswas et al,, PRL 2012]

Pag
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Ghost-free higher derivative gravity

« Non-local higher derivative theories can be ghost-free:

-v(o/ME) _ q

1
(£ f d*x=g(R + G, F(O)R*), F(D)= -

l6nG 0

;;'L

« Ghost-free propagator:

(k) = e¥(- Ff"fMﬁ}nt- S(k) = e?- k? /M%)

,uw}cr

« Entire function, e.qg.

_V(DfM ) — E_D!{M.b
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Ghost-free higher derivative gravity

* Linearized metric for a static point-like source:

ds? = —(1 + 2¢(r))dt? + (1 - 2¢(r))(dr? + r2dQ?)

e

l Ve ‘

[’I e MIV2h(#) = 4nGmSP) () o(r) =— GTmErf (M;r)
IR uv

Gm

(f?(T)”—T

e GmM; .

\»ﬁ

Singularity-free!

T o e T Biswas et al.. 2006: Biswas et al.. 20121 Pag
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Ghost-free higher derivative gravity

Linearized metric for a rotating ring source in IDG:

ds? = —(1 4 2¢(r))dt? + 2h - didt + (1 — 2¢(r))(dr? + r2dQ?)

Stress-energy tensor:

S(x* + y* — a*
Too = md(z) ( ;: j: Toi = Toov;,

Uy = =YW, Uy =x0, v, =0

Differential equations:

1;;2
e MiV2P(F) = 46md(2)8(x* + y* — a?),
l;,rZ
e MiV2h, (F) = —16Gmwyd(2)8(x? + y* — a?),
q;,rz
e MsV2he, (F) = 166mwx8(2)(x* + y* — a?)
[LB, et al. PRD]
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Enlarging the class of ghost-free operators

« Scalar field Lagrangian:

1
L= Eqm(q_}@ - V(g),

—

Entire function

« Weierstrass theorem:

N
F(O) = e?©® ]_[(u —m2)"
i=1

1, r; =1 (ghost-free):

F(O) = e @@ —m?)
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Enlarging the class of ghost-free operators

« Scalar field Lagrangian:

1
L= Eff}F(D)Q’) = V(Q‘));

e

-

-"‘"..

Entire function

« Weierstrass theorem:

N
F(O) =e7® l_[(lj —m?)
i=1

* N >1 (unhealthy real pole):

F(O) = e7"® (0 - m#)(0 - m3?)
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Enlarging the class of ghost-free operators

N
F(D) = e 7@ ﬂ(—m +m?)"
=1

3, T = 1, };(D) =+ [local case ¥(0O) = 0: Lee & Wick: Modesto & Shapiro 2016+;

Anselmi & Piva 2017+ |

= infinite-derivative theory with a pair of complex conjugate zeroes

« Propagator:

[
F(D) = me“?’(”}(—n +m2)(O + iM?)(O — iM?)
o) 2 0
=e V'Y (-0 +m )(1+W)
M*ev(-p?) 1 . p% + m?
m*+ M* [p2 + m2 —ie | p* + M*

ifll(p) =
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Nonlocal Lee-Wick

« Scalar field Lagrangian:

2

1 O
— — e~ YDA — bl -
L= > pe~"'(O0 —m*e) (1 + M4)¢ V(g),

« Propagator:

il(p) = m* + M*

Mier(-p?) [ 1 p* + mj

p3+m2+p4+M“

« Tree-level unitarity:

y(-pr?) _ ‘ .
i } + e*’{‘i”z}nn[ . + 2 } = e"MIns®(p? + m?) > 0

p? 4+ m? —ie p+ iM% p* —iM?

=0
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Nonlocal gravity with complex conjugate poles

Nonlocal gravitational action:

S

M40

4 1, v -y(0O) [ - Hv
e d*x\—g .’R—GMER‘ + Gyye™ Y ————R!
ILur

Nonlocal graviton propagator:

EF{_pz}Mdl (Pj{fu;m = PJL;:M)

5 e GR -
ln;w,rm(p) — n nﬁ“fm(p) - p* + M4 p? 2p?

Ghost-free graviton propagator! Poles: massless spin-2
graviton pole + 1 pair of Lee-Wick poles
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Perturbative unitarity

StS=1, S=1+4iT = i(T*=-T)=T*T
i[{b|T*|a) = (b|T|a)] = Z(bIT"'"In)(an]a)

(b|T|a) = (2m)*6® (P, — Py)(b|M|a)

t[(bIM+Iu (b|M|a)]

d3
ky 1
: ZTE 4 {5[4) (Rz i
zHJ(Zﬂ'}* 2wy (n) ;

{n} 1

It

-"'51) (b|M ™ [{k {{ke 1M | a)
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Perturbative unitarity

e | S=1+f == HT"-Ty=7T*T
i[{b|T"|a) — (b|T|a)] = Z(bIT“"In)(nITIa)

(b|T|a) = 2r)*6W (P, — Py)(b|M|a)
LHS].

ft[(bIM‘*Iu (bM]a)] |

?
k, 1
: 2m)* 5‘“(& -
ZHJ(ZH‘}*‘ 2w (4n) :

{n}

it

ff:) (b|M ™ [{k Ik YIM | a)

J

! RHS
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_1 A3 9
L= 2¢F(DJ¢—3!¢3 4!¢4+K¢¢2+

2

2imit-0) p— 1= Y= = [an, [>
me[(-—i)AO—] =4©7 =er”f‘—<’: 2
e XO- XX -f X
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1 A g
L=5¢F(O)¢ 5 ¢% — 1 d* +rdpyp? + -

et (-p?)
F(O) = e‘}’(”}(-l_“j + m?), ifl(p) =

p? +m? — ie

= i[{p3, P4l M ¥ |1, p2) = (P3, P4l M |1, p2)]
1 1
pc+mé+ie p*+m*—ie

= iAze?(-%)

= 2n2%20(p°)5(p? + m?)
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Perturbative unitarity

« So far, we have shown tree-level unitarity >—<

What about loops? Aof ><X

Unitarity of nonlocal theories with standard poles

[Sen & Pius 2015; Carone 2017; Briscese & Modesto 2018; Chin & Tomboulis 2018;
Koshelev & Tokareva 2021]

Unitarity of nonlocal theories with complex conjugate poles
[LB, Yamaguchi = arXiv:21XX. XXXXX]

We only consider one-loop bubble diagrams

_1 A5 9
L=5¢FDO¢ 3!¢* 4!¢>“+m¢w2+
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k—p k—p
dk® r d3k 1 1
2 ) (2m)3 k% +mé —ie(k —p)é+mé — ie

M(p) = (p|M|p) = (—E)}lzf
c

Q1= —wy + i€ Im[k7] 4 Re(p¥) > 0

M | :
QE_T" _mk-;:r"l'i"-:

03 = Wi — 13
Q1 Q,
[ ] [ ]

Qe =p" + wy_p — i€

wi = || k? + m?

Wy—p = J(E — p)24+m?




23:17 Thu Oct 28
talk-Pl_Buoninfante ~

talk=-Pl_Buoninfante

k—p
dk”[ d3k  eY(-k%) e¥ (=(k=p)?)

M(2) = (pIMIp) = (~)22 f

o 21 ) (2r)3 k%2 +m? —ie(k —p)2+m? —ie

Im[k°] 4
* Liouville’s theorem implies the
presence of singularities at
infinity!
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k—p k—p
dk”[ d3k ek oY (=(k=p)?)

M) = (pIMIp) = (~))22 f

o 21 ) (2r)3 k2 +m? —ie(k —p)2+m? — ie

Im[k°] 4
* Liouville’s theorem implies the
presence of singularities at
infinity!
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Singqularities at infinity

« Example of singularity at infinity: y(—k?) = —=k?* = (k?)?
k® = xe'?, K € R,
g~ I o E.(k”}z-k'z — o—k?piK?sin29 k% cos 20

Tm[k"] ,

GOV Tt

singularity singularity

>
at infinity at infinity R[]

convireent




23118

Thu Oct 28

talk-PI_Buoninfante -

talk-Rl_Buoninfante

Contour prescription

In local two-derivative theories starting from Minkowski is
equivalent to starting from Euclidean

In nonlocal theories starting from Minkowski is NOT well-defined
because of divergencies at infinity

Define the contour € to be the imaginary k° —axis
Complexify internal and external energies: k" € ¢, p’€C

To avoid poles and pinchings deform the contour in finite-distance
region of the complex plane by keeping the ends fixed at +ic

Analitically continue external energies to real values

Nonlocal theories + real poles [Sen & Pius 2015]

Nonlocal theories + complex conjugate poles [LB, Yamaguchi - arXiv:21XX.XXXXX]
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Singularities at infinity

Example of singularity at infinity: y(—k?) = —k2? = (k°)? — k2

k% = xe*®, K € R,

—k* = oK) -Rk® . 5—R® k" sin20 ox® cos 20

€

|I||i_.‘.'”] 4

convireent

singularity singnlarity

at infinity at infinity

CONve
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Contour prescription

In local two-derivative theories starting from Minkowski is
equivalent to starting from Euclidean

In nonlocal theories starting from Minkowski is NOT well-defined
because of divergencies at infinity

Define the contour ¢ to be the imaginary k° —axis
Complexify internal and external energies: k" € €, p"€C

To avoid poles and pinchings deform the contour in finite-distance
region of the complex plane by keeping the ends fixed at tico

Analitically continue external energies to real values

Nonlocal theories + real poles [Sen & Pius 2015]

Nonlocal theories + complex conjugate poles [LB, Yamaguchi - arXiv:21XX.XXXXX]
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K=p
dik® r d3k e¥ (=k?) e¥ (=(k=p)?)

= = (—=i}A2
TG W iy = 08 L 2w ) 2m)3 k2 +m? —ie (k —p)é+m? —ie

Im[k°]

* Pinching:

Q:=Q; & p’=w,+ Wi —p
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Bubble diagram: nonlocal with real poles

* Region I Re(p?) > 0

Re[Q;] < Re[Q3] < p° < wy + wy—y
I||]|L'“] ™
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Bubble diagram: nonlocal with real poles

* Region Il Re(p?) > 0

Re[Q;] > Re[Q3] & p¥ > wy + wy—y
Tm[&"] A

Re[k?]
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Bubble diagram: nonlocal with real poles

* Region Il Re(p?) > 0

REIQ‘EI ::" RE[Q:.}] = I]ﬂ -2 fl.l;,: + fﬂﬁ-_:ﬂ
[ [A"] p

e

Re[k"]
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Bubble diagram: nonlocal with real poles

k Ie
p p
p p

k—p k—p
dk® [ d3k  eY(-k e (= (k=p)?)

Re(p”) > 0

M) = (—i)2 f

rue, 2T (2m)3 k% + m? — ie (k — p)?+m? — ie

= M;(p) + M, (p)
L. Gives an imaginary part!

dk 1
(21)3 2w 20—

LHS = 2Im{M (p)} = 2nA? 8(p° — wi—p )8 (P° — Wi — Wy—p)

K_, Same Cutkosky rules of
local two-derivative case!
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Bubble diagram: nonlocal case + complex poles

Im(k”] 4 Re(p?) > 0

Relk)

QE C‘?" Q4
Qe

X @ XQH

{?11 B#
C=JUC UBUB"
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Some remarks

Higher loops investigated in the case of real masses (sen & Pius 2015]

Higher loops complex conjugate masses not yet [Work in progress...]

More complicated vertexes will not affect the result as long as
they do not change the pole structure

In the gravitational case, proving the Cutkosky rules is not
sufficient. We also need to project away unphysical states due
to gauge invariance

What about infinite pairs of complex conjugate poles?
The same prescription should apply.
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Some open problems

How to define an Hamiltonian for nonlocal theories?

How to define a ‘good’ classical limit?
(...correspondence principle?)

Quantification of the causality violation?
(Only at short distances...?)

Singularity resolution at non-linear level?
Huge arbitrarity in the choice of the entire function !?!
(constraints from phenomenology, e.qg. inflationary cosmology:

see Koshelev, Kumar, Starobinsky JHEP 201?,2020)

Nonlocal Lagrangians from first principles...?
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Some open problems

g

é How to define an Hamiltonian for nonlocal theories?

— ‘\I

I// - 1

« How to define a ‘good’ classical limit? \\([ U) f,f
4

(...correspondence principle?) -~ -

/- Quantification of the causality violation?
l_/_ (Only at short distances...?)

[- Singularity resolution at non-linear level?
« Huge arbitrarity in the choice of the entire function !?!
(constraints from phenomenology, e.g. inflationary cosmology:

see Koshelev, Kumar, Starobinsky JHEP 2017,2020)

« Nonlocal Lagrangians from first principles...?
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REVIEWS OF MODERN PFPHYBICS

L INTRODUCTION

HE theory of elementary particles which 1 propose
in the following pages is based on the current con-
ceptions of quantum mechanics and differs widely from
the ideas which Einstein himself has developed in regard
to this problem. I hope that it may nevertheless be ac-
ceptable as a contribution to this volume in honor of his
70th birthday, as it is based on his famous relation be-
tween encrgy B oand mass moof a physical system,
E=md, and as it can be interpreted as a ritional
generalization of his (“special'’) theory of relativily,

Relativity postulates that all laws of nature are in-
variant with respect to such linear transformations of
space time a*w=(x, /) for which the quadratic form
R abgym f—x? is invariant (the velocity of light is
taken 1o be unity). The underlying physical assumption
is that the 4-dimensional distance r= R} haus an absolute
significance and can be measured. This is a natural and
plausible assumption as long as one has to do with
macroscopic  dimensions where measuring rods and
clocks can be applied. But is it still plausible in the
domain of atomic phenomena?

Doubts have been expressed a long time ago, e.g., by
Lindemann (Lord Cherwell) (14) in his instructive little
Lbook. I think that the assumption of the observability
of the d-dimensional distance of two events inside
atomic dimensions is an extrapolation which can only he
justified by its consequences; and I am inchned to
interpret the difficulties which gquantum mechanics en-
counters in describing elementary particles and their
interactions as indicating the failure of that 4|:\|-1le|ﬂ|;:m

VOLUME 1, NUMBER 1

Reciprocity Theory of Elementary Particles

Max Domrx
University of Edinburgh, Edinburgh, Scotland

_Buoninfante ~

spaneling to the particles with which one has possibly to
do. Thig is the problem which is now in the center of
interesi: by estimating p and £ for a particle observed
in the Wilson chamber or in a photographic emulsion,
one obtains & rough value of the rest mass which may
permit one to recognize the kind of particle with which
one has to do. If the value of P thus obtained is however
incompatible with the known particles a new one is
discovered. During the last year this has happened
severi] times, and one gets the impression that there
may be no end of it. New types of mesons are found
almost every week, and it seems to be not an extrava-
gant extrapelation to suppose that there is an infinite
number,

It looks, therefore, as il the distance P in momentum
spacce is capable of an infinite number of diserete values
which can be roughly determined while the distance &
in coordinate space is not an abservable quantity at all.

This lack of symmetry seems to me very strange and
rather improbable, There is strong formal evidence for
the hypothesis, which 1 have called the principle of reci-
procity, that the laws of natuee nre symmetrical with
regand Lo space-time and momentum-energy, or more
precisely, that they are invariant under the trans-
formation

Y, = (1.1}

The most obvious indications are these: The canonical
equations of classical mechanics

dhe gl (s, the=—0H/d2* (1.2)

The well-known limits of obsery el et et etd il der. the tﬂnsfﬂfmnlmn (1), :i

T A 1 R RN BT R

® = 32%
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where PP = pbp;, and the suxiliary condition ai- = 0

is imposed. It ean be shown for tho pure radintion
field that the factor ¢ —(P+FV2 does not lead to any
consoquonces different from those of the orthodox
theory ; bub if the electron is considered in tho ususl
SeBaindeginoylarity in the radiation field,

bagnoving electron is

Incing to the
usual solution At large distanco, and to the difference
between the relarded and advanced potentials intro-
duced by Dirac® in the firet approximation at small
distance from the singularity, The cnergy and
momentum of the ﬁ:fd are also finite, and are
identified with the energy and momentum of the
electron. In this way the idea of Abraham® has been
realized without the relativistio diffioultics associnted
with & rigid clectronic structure.

Before quantization, & Hamiltonian formulation is
required, for which, because of the appearance of
high derivatives in the Lagrangian, either the well.
known method of Lagrangian multipliers or a method
of suceessive approximation may be used. The inter-
action energy then has the form :

Fi = ex. Se={"=k. p)UEH2E® B(k)eit b ..
B*(k)e=it . 2l g =8~k . py"BY2', (3)
where [ - {p* -+ mo* 3¢ s the cnergy of the

R T

August 13, 1949  vel, 184

discrete character (or characlers) is | multiplied by
the expeocted number for r of the specified character
{or charactera).

The binomial and the hypergeometrie distribu.
tions are tho simpleat caacs where this theororn ecan
be applied direct. For these distributions, tho rth
factorial moments, @y, are

i (‘l:-) pf = nin prand

(2 e
N

nlr) (Np)ir)
N !

rospoutively. They are evidently r! times the ox.
pectation for » of the cvonts,

Some of tho other distributions which can he
applied in this theorem are: (@) the theory of the
distribution of black-black, black—white and other
joins arising from points any one of £
eolours arranged on a line or in the form of a
rectangular lattice ; (6) the distribution for the
number of runs in asconding or descending order
discussed by Kermack and MeKendrick®, which
ultimately is the same thing as the distribution of
peaks and troughs discuseed by Kondall®; and (e)
the distributions arising in the matching theory deals
with by Batin', Anderson® and Wilks®. It is also
felt that the theorem will he useful in evalusting the
factorial momonta of many other distributions. The
application and the proof of this theorem will be

diarnsand in datail aleawharn ahaetlsr
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K=—p

J-:—p

1

Q, = —wi + i€

'r”(gbﬂf Wy—p + LE

Q3 = wy — (€

Qs =p” + wy_p — i€

Im[k°] 4

, d:’c“ d3k
Hidp = Akl = S0 | (gn)u{ﬂ+m

)

—ie(k — p)e+m? — ie

Re(p¥) > 0

wy = Jk? + m?

Wy—p = J(E — p)24m?
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Some open problems

Ly a A )

g

= 3 )
é How to define an Hamiltonian for nonlocal theories? __\K/

.-‘/ _ |
« How to define a ‘good’ classical limit? '&{(U)/}
(...correspondence principle?) L/e:“h--_r.-::

/ Quantification of the causality violation? {_
l_/_ (Only at short distances...?) "L G/( Lﬂﬂ j&

[- Singularity resolution at non-linear Ievel?

« Huge arbitrarity in the choice of the entire function !?!
“~(constraints from phenomenology, e.g. inflationary cosmology:
see Koshelev, Kumar, Starobinsky JHEP 2017 2020)

———

e

.| Nonlocal Lagrangians from first principles...x
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