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Abstract: Finding cosmological models that are consistent with a wide range of observations, including those that indicate a high Hubble constant
(the current rate of expansion of space), has proved to be very challenging. In this talk | explore why. Our exploration leads us to fundamental
sources of length scales in cosmological models. gravitational collapse time scales and photon electron-scattering mean free paths. We find that
scaling down these quantities leaves cosmic microwave background (CMB) maps, and many other cosmological observables, nearly invariant, while
boosting up the expansion rate. | then introduce a model that takes advantage of this symmetry to boost up model predictions of the Hubble constant
given CMB and other cosmological data. Gravitational collapse time scales are scaled down from standard cosmological values by the introduction
of a ‘mirror world' dark sector, and photon mean free paths are scaled down by reducing the amount of helium, thereby freeing up more electrons. |
speculate about alternative ways to reduce photon mean free paths, as consistency with the Riess et a. (2021) measurement of the Hubble constant
requires there to be less helium in the universe than is observed.
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Solar System Primordial Plasma

Natural systems where the relevant physics is simple
enough that the system is calculable.
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Newtonian Universal
Gravitation

Natural systems where the relevant physics is simple
enough that the system is calculable.
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Anomalous Perihelion Anomalously Large H,
Precession of Mercury

Natural systems where the relevant physics is simple
enough that the system is calculable.
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CMB + assumption of the
standard cosmological
model, LCDM

Cepheids + Supernovae

—e— SPT-3G + Planck + ACT DR4 (Balkenhol et al. 2021)
SHOES (Riess et al. 2020)
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Figure by L. Balkenhol
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Schoneberg et al., arXiv posting from July 21, 2021

The H; Olympics: A fair ranking of
proposed models

Dark Radiation models
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Schoneberg et al., arXiv posting from July 21, 2021

The Hy Olympics: A fair ranking of
proposed models

Other early universe models
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A Symmetry of Cosmological Observables, and a High Hubble Constant as an
Indicator of a Mirror World Dark Sector
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Outline

Successes of LCDM

Scaling transformation symmetries in
cosmology and symmetry breaking
effects

An exact® symmetry!

Implementation with a mirror world
addition to the dark sector

New Questions
— Our helium problem
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LCDM makes a very precise prediction
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CMB Polarization Power Spectrum

* Planck
« ACTpol
« SPTpol
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Last-scattering surface

=2970 K

T=2.73 K
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and
now

Transparent neutral gas

Opaque
ionized
plasma
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Last-scattering surface
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Wh iCh U n ive rse Sound horizon in LCDM
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slow expansion
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How do we tell 147 Mpo

|

which universe Sound hotizon n LCDM
We are in? 6, = 0.596401 + 0.00034 (in degrees)

Planck Collaboration (2018)
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fast expansion

slow expansion
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Scaling Transformation #1: H@) > fH()

D

Q Cq
D:/da/(a2H) ?“32/0 daa2H

6s =rs/D s preserved (has no dependence on f)
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e-/e+ annihilation

Weak interactions
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Scaling Transformation #1: H@) > fH()

Can be realized with

pa — f2pa
Pm — fQPm

Prad — fZPrad

_ 8nG

HZ(O’) — T (pA i pm,Oa_3 =+ prad,Oaf_4)




Symmetry breaking effect

Photon diffusion
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How do we distinguish large sound horizon far away, from small sound
horizon nearby?

200 |

1 Large
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A Far away

arcmin

Pirsa: 21100021

Page 24/49



Pirsa: 21100021

How do we distinguish large sound horizon far away, from small sound
horizon nearby?
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Scaling Transformation #2
H(a) — fH(a)

orne(a) = forne(a)

r? o N da x (1/f)?
b [ (/1)

a’Horne.a

So 0O, :’I“d/D Is independent of  f




Decreasing He boosts n,

H"Ibh He universt ﬂ : ]5

“ e 8

An example at NNy = 0 5
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Scaling Transformation #2
H(a) — fH(a)

orne(a) = forne(a)

Can be realized with

pa — f2pa
Pm — f2pm

Prad — fzpra
1 —Yp —)f(].—Yp)

Fraction of baryonic
mass in helium




Decreasing He boosts n,
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An example at n./n, = 0.5
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Scaling Transformation #2
H(a) — fH(a)

orne(a) = forne(a)

Can be realized with

pa — f2pa
Pm — fQPm

Prad — fzpra
1—Yp —)f(].—Yp)

Fraction of baryonic
mass in helium




Constraints from Planck 2018 CMB temperature and
polarization power spectra

Plik TTTEEE
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Holkm/s/Mpc]
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Free-streaming light relic
fraction — another symmetry-
breaking effect

Bashinsky and Seljak (2004)
Follin, LK, Millea, and Pan (2015)
Baumann, Green, and Wallisch (2016)




Constraints from Planck 2018 CMB temperature and
polarization power spectra

Neff - Neff + YP - Neff 13 fﬂuid + YP

Plik TTTEEE

70
Holkm/s/Mpc]
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Scaling Transformation #3

vV Gpi(a) = f1/Gpi(a)

orne(a) = forne(a)

Ay — Ag/fr="1




An exact (if unphysical) scaling
symmetry

* In the limit of equilibrium recombination and
massless neutrinos, dimensionless cosmological
observables are exactly invariant under

VGpi(a) = fo/Gpi(a), orne(a) = forne(a)

and A — As/f('”'s'l).
This includes CMB temperature and polarization,

galaxy clustering, BAO, weak lensing.

Leaves density ratios (2), matter-radiation
equality, matter fluctuation amplitude (like
sigma_8, Sg), free-streaming fraction, baryon-
photon ratio exactly invariant.

Zahn and Zaldarriaga (2003) had proposed this scaling without the photon scattering part.
10/12/21 Slide from Francis-Yan Cyr-
o Racine - UNM
P
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« This really leaves the CMB temp/pol invariant (fixin
recombination history here)

I+ 1)CE2m

full scaling

1000 1500 2000 0 0 1000 1500 2000 0 500 1000 1500 2000

Hy = 67.5,74.3,81km/s/Mpc

10/12/21 Slide from Francis-Yan Cyr-
Racine - UNM
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Q: Why does this work?
Scaling Transformation #3

vV Gpi(a) = f1/Gpi(a)

orne(a) = forne(a)

Ay — Ag)fre?

A: Dimensionful coefficients in equations of motion:

v/Gpi(a) and orn.(a)

Dimensionful constants in initial conditions: none!




Example Boltzmann Equation

(for Fourier mode with wavenumber k)

a2Hdi@1 = g (©g + ¥) + aotne [©1 — ivy /3]
a

Einstein Equations

dg

k*¢ + 3aH (azﬂa - a,H'gb) = —47Ga’® Z pidi,  (5)

k(¢ —y) = 12rGa® Y (pi + P;)oi,
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Special feature of our
Universe: Initial conditions

We happen to live in a Universe in which the
initial scalar fluctuations have no intrinsic

scale. . —
(k) = As(k/kp)™"

Since ng < 1, the different Fourier modes have

slightly different primordial amplitudes.

Thus, the transformation will modify
the amplitude of fluctuations (CMB, P,(k), etc.)

However, since power laws have no scale, this
can be corrected with a trivial rescaling:

Slide from Francis-Yan Cyr-
ng—1
Zahn and Zaldarriaga (2003) Racine - UNM Aks — AS / f S
&
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Reality check: Symmetry
breaking

The above transformation scales all energy densities,
including that of photons -> BIG PROBLEM!
Ivanov et al. (2020)

The COBE/FIRAS temperature anchors the photon
energy density, hence breaking the scaling symmetry.

Recombination is not an equilibrium process, and is

thus not invariant under

Same for Big Bang Nucleosynthesis.
Neutrino masses (can be eliminated by [[rE=SN{ )

Francis-Yan Cyr-Racine - UNM
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Exploiting the symmetry: Mirror World

Can we get around the COBE/FIRAS constraint?
Instead of adding real photons, add dark photons

These dark photons need the same streaming
history as regular photons, so add dark baryons
(atomic dark matter), with similar parameters as in
the SM.

To scale up neutrino density, add dark neutrinos (or
other light free streaming species).

This is basically a mirror sector (been studied a lot
see e.g. twin Higgs papers)

Chacko et al. (2005, a,b,c), Craig & Howe (2014), Craig et al. (2015), Farina (2015), Barbieri et al.
(2016), Chacko et al. (2017), Csaki et al. (2017), Hochberg et al. (2017), Harigaya et al. (2017), Ibe
et al. (2019), Terning et al. (2019), Curtin & Gryba (2021), and many more

Slide from Francis-Yan Cyr- 58
Racine - UNM
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Zeroth Test: The exact symmetry

e e e e . With a fixed
recombination history,
we can fit any value
of the Hubble
constant to CMB +
BAO data.

This is just a
numerical realization

s of the symmetry we
N already know exists.
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First (real!) Test: Recombination

« Symmetry-breaking
effects from the self-
consistently calculated
recombination history
are very mild!

The symmetry allows
us to completely
eliminate the Hubble
| tension between CMB
Ron o w o + BAO and the local
I distance ladder (R21
here).
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Constraints from Planck 2018 CMB temperature and
polarization power spectra

Neff - Neff + YP - Neff + fﬂu:’d ED YP

Plik TTTEEE

70
Holkm/s/Mpc]
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Constraints from Planck 2018 CMB temperature and
polarization power spectra

Negr — N+ Yp —— Neg+ fuig + Yp E— Scaling symmetry

70
Holkm/s/Mpc]
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Mirror Sector Freedom

B ACDM + f(scaling enforced): Planck+BAO
BN ACDM + fapm+To+NS+1p: Planck+BAO
At face value, the direct Hubble ACDM + fapu+To+Nfi+ ¥p: Planck+BAO+R21

measurements predict ~3% in
atomic dark matter, and a dark
photon bath with a neutrino-like
temperature.

However, Yp
is low!

70 80 70 80
Ho [km/s/Mpc] Ho [km/s/Mpc]

Francis-Yan Cyr-Racine - UNM
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Conclusions

* We have identified a previously
unnoticed symmetry of dimensionless
cosmological observables.

» A dark sector mirroring the Standard
Model can exploit this symmetry to
completely eliminate the Hubble tension.

* This symmetry can help generate new
models that are compatible with
cosmological data.

Francis-Yan Cyr-Racine - UNM




Open Questions

« Can we achieve a higher photon
scattering rate and have consistency
with BBN and Yp ?

 Can we detect the 3% of atomic DM?

« Can a consistent mirror sector be built?
— Bansal et al. (hep-ph/2110.04317)
— Blinov, Krnjaic, and Li (hep-ph/2108.11386)

Francis-Yan Cyr-Racine - UNM
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