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Abstract: Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in
physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that
classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data
obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions,
classical algorithms that do not learn from data cannot achieve the same guarantee. We aso prove that classical ML algorithms can efficiently
classify awide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of
a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive
numerical experiments corroborate our theoretical resultsin avariety of scenarios, including Rydberg atom systems, 2D random Heisenberg models,
symmetry-protected topological phases, and topologically ordered phases.
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Motivation

® Machine learning (ML) has received great attention in the quantum community these days.

: . 1
® Yet, many fundamental questions remain to be answered.

( Classical ML \

for quantum physics/chemistry

The goal @):

Solve challenging
guantum many-body problems
better than
traditional classical algorithms

.8

"Solving the quantum many-body problem with artificial neural networks.” Seience 355.6325 (2017): 602-606.
"Learning phase transitions by confusion.” Nature Physics 13.5 (2017): 435-439.

Pirsa: 21100010 Page 3/41



Motivation

® Machine learning (ML) has received great attention in the quantum community these days.

. . 1
® Yet, many fundamental questions remain to be answered.

( Classical ML \

for quantum physics/chemistry

The question ®:
Can ML algorithms be more useful
than non-ML algorithms in
physically relevant problems?

. 8

"Solving the quantum many-body problem with artificial neural networks.” Seience 355.6325 (2017): 602-606.
"Learning phase transitions by confusion.” Nature Physics 13.5 (2017): 435-439.
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QOutline

® Review on classical shadow formalism

® Training machines to predict ground states
(theory+experiments)

® Training machines to classify quantum phases of matter
(theory+experiments)

&3
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Classical shadow formalism

Theorem 1 [HKP20]

~

There exists procedure that guarantees the following. :

1. Given B, e > 0, the procedure learns a classical representation of
an unknown quantum state p from

N = O(Blog(M)/e*) measurements.

2. Subsequently, given any Oy, ..., Oy, with B > maxllO,-IlghadDW,

the procedure can use the classical representation to predict 04, ..., 0y,
where [0, — tr(O,p)| < €, for all i.

o 4

For example:

e M =105 B =1, then naively we need 10%/¢* measurements.

* This theorem shows that we only need 6 log(10)/e? measurements.

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Classical shadow formalism

Few Repetitions |
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e |_|_ SR Predictjng ...
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Data Acquisition Phase Prediction Phase

Algorithm for predicting tr(Op): (median-of-means)

Compute X; = tr(O4~'(|s;Xs;]). Vi = 1,...,N.

1 NIK 1 N
Predict 6 = median| — ) X,,...,—— Z X |
NI/IK N/IK

i=1 i=N-N/K+1

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Classical shadow with
randomized Pauli measurements

e After T randomized Pauli measurements, an n-qubit system p yields a classical shadow

1 « 1
or(p) = = Z 01(’) ® ... ® 6, where Gs(t) € C?*? is the measurement outcome for qubit i.
=1

¢ or(p)is a2’ x2" random matrix with Eo;(p) = p and takes O(nT) bits to represent.

Preserve Properties

0111
‘_, 011 @ Hamiltonian

00 '1:!1_ Correlations

01 0\?*;5_;//1 01 Entanglement
Measurements 1110001001000 Entropy

@ Classical representation u Local Observables
Few rounds of randomized measurements of the quantum system -es etc.

o

e

uonnjoAy
wopuey

l Quantum System

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Predicting ground states: Task

¢ Given parameters x that describes a Hamiltonian H(x), the machine needs to predict a
classical representation of the ground state p(x) of H(x).

e x € R™ describes laser intensities, few-body interactions, magnetic fields, etc.

* We assume that x — H(x) is not known exactly. And we represent p(x) on a classical
computer using its classical shadow o (p(x)).

Classical ML

Predicting ...
mm

}'{ Parameters describing @ Classical representation
a physical Hamiltonian of the ground state
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Predicting ground states: Task

e x € R™ describes laser intensities, few-body interactions, magnetic fields, etc. We will normalize such that x € [-1,1]™.

* Training data: examples of params and associated ground state {x, = o {(p(x,)}}_,.
A
Training data

Parameters describing Classical representation
a physical Hamiltonian of the ground state

Quantum many-body
Synthesize grou:l_d i~ Perform

in the Lab Fa il Measurements
PV

T

«ss and other examples
Classical ML
New pa.rams Predicting ...
not Iin (i, [,
training data

}'{ Parameters describing @ Classical representation
a physical Hamiltonian of the ground state

1110007001000
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Predicting ground states: ML

e Training data: {x, — JT(p(xba))}?f:l, where x, € R™, o,(p(x,)) € C>>*%,

=k
e We consider training an ML model that takes in an m-dim vector x and outputs a

2" X 2"-size matrix 6(x); more precisely, an efficient representation of 6(x).

e The ML model needs to be trained within time polynomial in n, m.

1010011000111
109?*(,? 1
11(3¢+#%—00

01 i ] .:"?\‘1}' B 01
1110 1000

H Parameters describing

; @ Classical representation
a physical Hamiltonian neurons - : 2 5 D"

of the ground state
neurons neurons neurons
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Predicting ground states: ML

¢ We show that the neural network after training actually have an analytical form given by

N N
) = argmin D 18y/(x) = o (pGeoDI3 = 2 N0 2 )or(p(x,))
ow™ =1 =1
where the learned function k™ (x, x,) € R can be obtained efficiently; based on [JGH18].

[JGH18] “Neural tangent kernel: Convergence and generalization in neural networks.”
arXiv preprint arXiv:1806.07572 (2018).

Training data: {x, = o;(p(x,)) }Q,’;l, where x, € R™, 6;(p(x,)) € C2x2",

1010011000111
1007 F 011

iz L1

11{=2& %00

0105 57101
1110 1000

H Parameters describing ‘ @ Classical representation
a physical Hamiltonian neurons - : o s of the ground state
neurons neurons neurons
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Predicting ground states: ML

* Furthermore, various machine learning models (kernel methods, infinite-width neural networks, etc.)
can be shown to yield an analytical form as the global minimum of the optimization (training):
N

6(x) = Y. k(x, x)o(p(x,))
£=1 X
where k(x, x,) € R is a learned function for how to extrapolate the known examples to the full space.

Training data: {x, = o7(p(x,)) }‘Ll, where x, € R™, 6;(p(x,)) € C**%,

xe[-L1"

P01

1

11100UTUG1000

}{ Parameters describing ' % @ Classical representation
a physical Hamiltonian neurons o0 \ 2 of the ground state
neurons neurons neurons
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Predicting ground states: ML

e Aslong as k(x,x,) € R is efficiently computable, the ML model’s prediction
N

6(x) = ) k(x.xp)01(p(x,))
£=1
can be represented efficiently with @(?TN ) bits; recall o;(p(x,)) only require O(nT) bits.

Training data: {x, = o;(p(x,)) }f}’:l, where x, € R™, 6;(p(x,)) € C2x2",

xe[-L1"
1010011000111

N AN
0105
11100UTU01000

3<€ Parameters describing ' \ %R Classical representation

a physical Hamiltonian neurons o0 y %2 of the ground state
neurons neurons neurons
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Predicting ground states: Theorem

N
We consider an ML model 6(x) = E k(x, x,)or(p(x,)) with L,-Dirichlet kernel.
£=1 X

e The learned model 6(x) captures the ground state properties accurately (on average).

l For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,

given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),
Eynio1,110] THOB(x)) — TH(Op(x) |* < €,

L L

for any sum of local observables O = Z O, with Z”Of” = (O(1) and e: const. Training and prediction
j=1 =1
\ time are polynomial in 7 and linear in system size n.
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Predicting ground states: Theorem

N
We consider an ML model 6(x) = E k(x, x,)or(p(x,)) with L,-Dirichlet kernel.
£=1

e The learned model 6(x) captures the ground state properties accurately (on average).

Intuitively, in a quantum phase

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,
given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),

E,oi-1.10| TH(O06(x)) — Tr(Op(x)) |* < e,

L L
for any sum of local observables O = Z O, with Z”Of” = (O(1) and e: const. Training and prediction
I

j=1 J=1
time are polynomial in m and linear in system size n.
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Predicting ground states: Theorem

¢ Key steps in the proof:
1. Constant spectral gap implies some “smoothness” condition in ground state space
(spectral flow + Lieb-Robinson bounds).

2. Generalization error bounds for the proposed ML with #,-Dirichlet kernel trained on randomized

measurement data under the “smoothness” guarantee (statistical analysis + #lattices in a m-dim. sphere).

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,
given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),

E,i_1.1»| TH(O06(x)) — Tr(Op(x)) |* < e,

L L
for any sum of local observables O = Z O, with Z”Of” = (O(1) and e: const. Training and prediction
j=1 j=1 !
time are polynomial in m and linear in system size n.
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Predicting ground states: Theorem

A limitation: € can only be a constant. In particular N = m /),
One may wonder if quantum ML algorithm could overcome this limitation.

We prove in the appendix that any quantum (classical) ML algorithm require N = m*1/),
so the advantage of quantum ML can only be polynomial. I

\
l For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,

given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),

E,i_1.1»| TH(O06(x)) — Tr(Op(x)) |* < e,

L L
for any sum of local observables O = Z O, with Z”Of” = (O(1) and e: const. Training and prediction
j=1 =1
\ fime are polynomial in  and linear in system size n. y
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Provable advantage of
learning algorithm with data

Proposition 1
If a classical polynomial-time randomized algorithm & can achieve
Epio11pn| Z(x, 0) — TH(Op(x)) | < 1/4, .

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

k RP = NP: NP-complete problems can be solved in
randomized polynomial time.
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Provable advantage of
learning algorithm with data

Proposition 1 Non-ML algorithm cannot achieve the
) - . . . same guarantee as the ML algorithm.
If a classical polynomial-time randomized algorithm & can achieve

Epioiapn| Z(x, 0) — THOp(x)) | < 1/4, .

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

-

The question ®:
Why ML can be more useful than
non-ML algorithms?

€8
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Provable advantage of
learning algorithm with data

Proposition 1
If a classical polynomial-time randomized algorithm & can achieve
Epio11pn| Z(x, 0) — TH(Op(x)) | < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

k RP = NP: NP-complete problems can be solved in
randomized polynomial time.
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Predicting ground states: Theorem

A limitation: € can only be a constant. In particular N = m /),
One may wonder if quantum ML algorithm could overcome this limitation.

We prove in the appendix that any quantum (classical) ML algorithm require N = m 1),
so the advantage of quantum ML can only be polynomial.

r Theorem 1. h )
For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,

given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),

E,i_1.1»| TH(06(x)) — Tr(Op(x)) |* < e,

5 L
for any sum of local observables O = Z O, with Z”Of” = (O(1) and e: const. Training and prediction
j=1 =1
\ time are polynomial in  and linear in system size n. y
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Provable advantage of
learning algorithm with data

If a classical polynomial-time randomized algorithm & can achieve
Epioiapn| Z(x, 0) — THOp(x)) | < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

\_ 2

Data contain computational power
(e.g., nature operates quantumly)

The question ®: The answer €9:
Why ML can be more useful than Generalizing from data can be
non-ML algorithms? easier than computing everything

G . .
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Predicting ground states: Theorem

A limitation: € can only be a constant. In particular N = m?(/®),

One may wonder if quantum ML algorithm could overcome this limitation.

We prove in the appendix that any quantum (classical) ML algorithm require N = m 1),

so the advantage of quantum ML can only be polynomial.

1

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a cokist. spectral gap,
given the number of training data N = poly(m) and T = 1 (one randomized Pauli measurements each),

E,i-1.1»| TH(08(x)) — Tr(Op(x)) |* < e,

5 L
for any sum of local observables O = Z O, with Z“Of” = (0(1) and e: const. Training and prediction
j=1 =1
time are polynomial in m and linear in system size n. y
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Provable advantage of
learning algorithm with data

Proposition 1
If a classical polynomial-time randomized algorithm & can achieve
Epioiapn| Z(x, 0) — THOp(x)) | < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

k RP = NP: NP-complete problems can be solved in
randomized polynomial time.
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1D Rydberg atom array

We consider training data size N = 20, T = 500 randomized measurements for constructing classical shadows.

The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and /,-Dirichlet kernel.

6
(@) z=% %xi -Y AN +S 0 (Mi” ;5|) N:N;
i i i<j ) wo-

Rydberg

atom array .‘%’.‘i.‘i’.‘a’.‘i.

a: atom separatation

ground Rydberg
state  state

N = |ri)ril, Xi=|gifril +|riXgal, Zi = |gi)gsl — [ra)ril

(c)
R Classical ML

R 0 e
-

5 10 15

Nearest training data

Rydberg atoms (1D array)

Classical ML
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S o 00,99,00500,00
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—

5 10 15
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0

S ;
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N 0 ZW
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5 10 15
Rydberg atoms (1D array)

*Solid lines in the six line plots indicate exact values from DMRG
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O-- O : Training data (a total of 20)
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2D random Heisenberg model

We consider training data size N = 100, T = 500 randomized measurements for constructing classical shadows.
The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and /,-Dirichlet kernel.

(@) 2o anti-ferromagnetic (b) Exact values from DMRG ML predictions
random Heisenberg model '
H=Y Jy(XiX; +YiY; + Z:Z))

1
2
3
a
-]
]
7
8
2]

10

- -1.0
Correlation
function

THNOYROReOSTNNTR oL
__________ o~
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QOutline

® Review on classical shadow formalism

® Training machines to predict ground states
(theory+experiments)

® Training machines to classify quantum phases of matter
(theory+experiments)

€
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Classifying quantum phases: Task

e Given a quantum state p, classify which quantum phases of matter the state p is in.

e Training data: examples of states and associated phase.

Training data
:: Trivial ed@ Sym.-broken &g Topological

«++ and other examples

: Classical ML _
New states %35 ee Trivial
not in - Fledicting - ed® Symmetry-broken
iina d i g mm N
training data {13 &g Topological

@ Classical representation sk Quantum
of the ground state phases of matter
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Classifying quantum phases: ML

The ML model tries to find a classifying function that separates the phases of matter well.

For symmetry-broken phases, there is typically a local observable O with
Tr(Op,) > 0,Vp, € phase A, Tr(Opp) < 0,Vpy € phase B.

Then the classical ML model only need to learn a linear function (easy with linear
classifiers).

But Proposition 2 shows that it is not possible to classify topological phases.

\

Consider two distinct topological phases A and B.

No (local/global) observable O exists such that
h
LTr(OpA) > 0,Vp, € phase A, Tr(Opg) <0,Vpy € phase B.
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Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(0p®9), or a general analytic function f(p).

e To do so, we consider learning a linear function in an co-dim space, where each state p is mapped to

$N (S (p) = lim é : €B ,( )EB GBVGCI Z®G“)]
D.R— oo d=0 d r

®d

=1 #=1

Il—

* It consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.

Consider two distinct topological phases A and B.
No (local/global) observable O exists such that
LTr(O,oA) > 0,Vp, € phase A, Tr(Opp) <0,V € phase B'J
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Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(0p®9), or a general analytic function f(p).

¢ S1(p)) = hm@ d! @ r!( )@ @ve(:[

=1 ¢=1

Il—

Consider two distinct topological phases A and B.

No (local/global) observable O exists such that
LTr(OpA) > 0,Vp, € phase A, Tr(Opp) <0,Vpy € phase B'J
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Classifying quantum phases: ML

Classical ML model: Learn a linear function in ¢p®'?d°%)(S_()) equiv. a nonlinear function in p.

All we need is to efficiently compute the inner product (referred to as shadow kernel)

T n
<¢,(shadow)(ST(p)), ¢'(shad0w)(ST(ﬁ))) = exp % Z exp (% E Tr (o-i(t)a.gt'))§ = J/(shadow) (ST(p)’ ST(p“)) .
tt'=1 j

i=1

Computing shadow kernels only take time O(nT?).

Training the classical ML model only take time polynomial in n, T, N
(and extremely efficient in practice).
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Classifying quantum phases: Theorem

B hecren 2 .

If there is a nonlinear function of few-body reduced density matrices that classifies phases,
then the classical algorithm can learn to classify these phases accurately. The amount of
training data and computation time scales polynomially in system size.

.

* The ML model constructs the classifying function explicitly.

* Examples of classifying functions on few-body reduced density matrices (assuming const. spectral gap) include:

1. Twist operators for 1D Haldane phase with O(2)-symmetry (linear function)
2. Hall conductivity for systems adiabatically connected to free fermion (low-degree polynomial)
3. Topological entanglement entropy in a constant region (nonlinear function)

* As long as the classifying function exists, the ML model with shadow kernel is guaranteed to find it.
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2D topologically-ordered phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kernel.
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Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(0p®9), or a general analytic function f(p).

e To do so, we consider learning a linear function in an co-dim space, where each state p is mapped to

$N(S(p) = lim é : €B ,( )EB €BV€C[ Z®G“)]
D.R— o0 d=0 d r

®d

=1 #=1

Il—

* It consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.

Consider two distinct topological phases A and B.
No (local/global) observable O exists such that
LTr(O,oA) > 0,Vp, € phase A, Tr(Opp) <0,Vpy € phase B'J

L3
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Classifying quantum phases: Theorem

B hecren 2 .

If there is a nonlinear function of few-body reduced density matrices that classifies phases,
then the classical algorithm can learn to classify these phases accurately. The amount of
training data and computation time scales polynomially in system size.

.

* The ML model constructs the classifying function explicitly.

e Examples of classifying functions on few-body reduced density matrices (assuming const. spectral gap) include:

1. Twist operators for 1D Haldane phase with O(2)-symmetry (linear function)
2. Hall conductivity for systems adiabatically connected to free fermion (low-degree polynomial)
3. Topological entanglement entropy in a constant region (nonlinear function)

* As long as the classifying function exists, the ML model with shadow kernel is guaranteed to find it.
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1D Symmetry protected topological phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kerrel.

(a) (XiXip1 + YiVisr + 6Z:Zi41) (c) Unsupervised ML at d = 0.5 (d) Unsupervised ML at d = 3.0
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2D topologically-ordered phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kernel.
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Conclusion

® We prove that classical ML algorithms, informed by data from physical experiments,
can effectively address some quantum many-body problems.

As a consequence, we establish the advantage of classical ML models over classical
non-ML algorithms in a physically relevant task.

Open questions:

Advantage of ML over non-ML algorithms in other tasks?

Rigorous guarantee for other quantum problems with classical ML?

Useful class of quantum learning problems with exponential quantum advantage?

Classical shadows enhanced with ML
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2D topologically-ordered phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kernel.

(a)
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