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Abstract: Thanks to integrability, we have access to a significant portion of the conformal data of planar N=4 SYM: in particular, the scaling
dimensions of all single-trace operators at finite 't Hooft coupling. Can we solve the theory by using these data as an input for the conformal
bootstrap?

We recently started to explore this question in asimplified setup: the one-dimensional CFT living on a supersymmetric Wilson line embedded in the
4D theory.

After reviewing how integrability describes the spectrum of this 1D CFT, | will discuss how, using the numerical conformal bootstrap with a

minimal input from the spectral data, it is possible to compute with good precision a non-supersymmetric OPE coefficient at finite 't Hooft coupling.
| will conclude discussing the open questions and future perspectives. Based on 2107.08510 with N.Gromov, J.Julius and M .Preti.
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Can we combine Integrability (i.e., exact spectral data)
with the Conformal Bootstrap
to study /' = 4 SYM?

Similar ideas were used for 2D CFTs
[Picco,Ribault,Santachiara '16]
[He,Jacobsen, Saleur '20]

Motivations:

- study observables beyond the (present) reach of either
method on its own

(e.g. the theory may lie deep inside the bootstrap bounds at small/finite A)
[Beem, Rastelli, van Rees 13, '19]

- predictions for future integrability methods

- hope of exploring the non-planar regime

- new insights on how to solve the theory?
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Introduction
Our setup: the Wilson line defect CFT

Integrability for the spectrum

Bootstrapping OPE coefficients

Outlook
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Integrability SUNN) #/ =4 SYM, large N, finite 4 = Ng}%M

Single-trace operatprs =~ closed strings ~ spin chain states

o) =Tr (00,F,,...) (O(x)0(y)) — y1|2aam

Ky

Quantum Spectral Curve [Gromov,Kazakov.Leurent,Volin ‘13]

1.0}
Re 5(A)

Numerical non-perturbative spectrum,
Complex spin (BFKL physics, Regge trajectories...),
Analytic weak coupling exp. (11 loops and more), ....

+ non-local operators, ...

Fig: [Levkovich-Maskyuk, Gromov,Sizov ’15]
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There is much more:

All closed-strings worldsheets in AdS5 x S5 should be integrable

(@(x1 ) s @(xn» should be solvable even at all orders in 1/N
\ / [Bargheer, Caetano,Fleury,Komatsu, Vieira *13 |

single traces

(+ Wilson loops, amplitudes, D-branes...)

A lot of progress: hexagonalization methods,
Separation of Variables, correlators in the Fishnet theory, ...

... but we are not there yet.
C,,3(4) for 3 generic single-trace operators is still impossible to compute.
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Naive idea: once spectrum is known,
crossing symmetry gives a linear relation on OPE coefficients
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However the planar OPE contains also double-trace contributions

(OO00) = (06)O0) +{OO00) ppected
free, O(1) 0(1/N2) |

OPE contains double trace operators
6, ~: 0,0*"0, :
|
A@a’ = A@l + A@2 + 2”"‘()(?)

OPE contains
single-trace operators O, = Tr(...)

(Wlth C@ 0,0, = 0( )

1
C%]@z@d = C]%‘ee+0(t)

+  sub-leading double-trace data

We start by studying a simpler setup without this complication.
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Setup 1/2 -BPS susy Wilson line in /=4 SYM, with insertions

O
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*

i di(id,+ @) 2di(id, + @ )

Ol(f'l)Pej‘
= ((Ol(tl)oz(t2)' : 'On(tn»)

/

Insertions in adjoint of SU(N,),
eg. 0=90,
0 = (I)”, = infinitesimal bumps in the Wilson line

— b ¢ [Drukker,Kawamoto '06]
O = (P°F,®°DY...), ...

Ox(1)...0,(1;) Pe " (4 )

Tr 'Pe

Dual perturbative 2d QFT at strong coupling [Giombi,Roiban, Tseytlin '06]

We will study these correlators M+ integrability
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Symmetries \\
Vacuum
1D Conformal Symmetry: \ !r}-’"\_, + d ]

d
SL(2,R) = {D,, P,, K, } x\Tr Pe’ (

.

i , S
Rotations around the line: ~
\

Rotations of the orthogonal

scalars d)i: SO05) S0G3) \\
¥

SL(2,R) X SO(3) x SO(5) c OSp(2,2|4)

Important %-BPS multiplets for this talk: Simplest non protected operators:

195}2=

!%1={¢Liss;“},

¢$®&Lj$5;”}
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Bootstrap setup: the simplest 4-point function

Choose a primary in B,: ®| =®,

(D ()@, ()P (1)@, (%)) = — ésxz‘m

12

Cross ratio: — *12%34 s T — 1
AT X13%4 xij — )9

Crossing equation:

(1234) ~ (4123)

1

3 a8
X2 X34

1

2

A(p) = =—A(1 - )

)
ya
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. [Liendo Meneghelli Mitev ‘17]
Constraints of superconformal symmetry

&E’f(%) — sz 52 9&’ of()() Crossing:

A-*f+xfA-p=0
= known diff. op.

Operator product expansion

fC0) = fix) + 0+ X, CX faly)

\ singlets of SO(5) X SO(3),

i e 1T i Ciz._l.z nontrivial dimensions

) =x Study of a related
topological observable gives

)

: 2 _ 3ww”
£ = =5 [ 2F (A + 1A +2,2(A +2); )] 1+ Cgps = Twryz
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Conformal bootstrap constraint

C=0 - f)+1fA-p

G0+ + 2 Ci1a%a(0) =0
explicit function (A) {C2 }
’ 1,1,A
= ?1+@2(3,){) unknowns

Existing  Numerical bootstrap [Liendo, Meneghelli, Mitev *17]
Results:  Functional bootstrap at strong coupling Menegheli Ferrero *21]

i 5 ,2051 305 1 351845 75 1
_2_\54' 24 A 16 A3/2 "'( 13824 TC(B)) A_2+‘_“

_2 43 5 11195 1 (1705 | 1613 .\ 1
- 30\/1"'6,1"' + 4 ( +24::3)12+...
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A useful generalisation

_ 0(0)

0 00 -
W =trPexp (f dt(-iA-:r}+¢I>-T'i|:'r|)) x00) x Pexp (/ dt(iA‘ic,Jr(I)-nTéLtc,D)
0

—0o

Weak coupling/long op’s picture: open spin chain with integrable
boundaries, Bethe ansatz

For “orthogonal” insertions: [Correa Maldacena Sever ’12] [Drukker ’12]

For “parallel” insertions: [Correa, Leoni, Luque ’18] (1-loop, one sector)

fig. from [Drukker *12] Non-perturbative method:

boundary thermodynamic Bethe ansatz equations / QSC

[Drukker’12][Correalii P BN S S Y Q ov,Levkovich-Maslyuk’'15]
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From the QSC point of view, the neutral states are in the same sector as
the supersymmetric “empty cusp”

¢J—>(i), 0d—-0,L=0

They appear as excited states solving the same equations

[Grabner,Gromov,Julius’20] ( general )
[AC,Gromov,Levkovich-Maslyuk’18] ( proved in ladders limit ) :
[Julius, unpub.]
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Quantum Spectral Curve:

Functional relations (algebra) + Analytic properties for Q-functions

Example: SU(2) invariant Heisenberg spin chain

SU(2) QQ-relations:

Qulu—i/2) Qu(u+if2) .
Qu(u—i/2) Qo(u+if2) |* @2

Analytic properties:

0w = e[, (u—w), Qyu)=e"[]* (u—w) Qu(u) = —2isin ¢ ub

. f¢ L Ny U — 1, i
In the Heisenberg case, this implies the usual Bethe equations: (“‘* i */2) =e ][] s
itk

Uy —1/2

Up — U — 1
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Quantum Spectral Curve

QQ-relations
(reduction of PSU(2,2|4) system)
ke

Quit +5) = Qi — 5) = P, ()Qy(u) P,(u) = Qu)Q,(u+ ),

PG = Py, Q) = FIQy(~u) Q) = P10y £ )

Q-functions have cuts dictated by
the 't Hooft coupling
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QSC for the straight line, details

o ) arameters
Pl i Alu.i/?.fl(u) , Ql - B ui/2+‘l (ﬂ) p

Py~ Apu™*2fo(u) , Qq ~ Bou'/**2gy(u) gw)~1, u—- - 00 /
Py~ Azu'/2fs(u), Qz~ Bsu™*/*"2gs(u),
Py~ A 2fi(u), Q~Bu ¥ Sgw), S = Zn—ﬂ el

With QQ-relations, we can get all Q-functions (numerically in terms of i{ca’n}‘_:f'

Fix parameters numerically by imposing gluing across the cut (-2g, 29)

0 00\ [/qi(~u

)
1 00 qz( u) Q;(u)
a sinh (27u) 0 10 qQs(—u) qf(u) - ul/2
0 —asinh (27ru) 0 1 ql( u)

many solutions Weak coupling solution

seful to find all states
pub.] + [AC,Gromov,Julius,Preti '21]
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We computed 35 states flowing in the OPE

G112, 0) + EA” Ciian%a(0)=0
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First attempt
11,00 + Ly, Ch1.0,9,00 = 0

Truncate the equation z A E W
—=N

Evaluate at (complex) values of the crossratio y;, 1 <i <N Finite linear system

N

Solve for { Clz,l,Ai-}

i=1

Different choices of {;{i} lead to a different solution. _ _ _
Study many possibilities and do statistics. Estimate=average. [Picco.Ribault,Santachiara '16]

This gives poor results for a dense spectrum.
Without the special 2D techm:eur 20]
we can use this method pling.
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More general approach: use linear functionals

G vz, (A 2) + ZA” C%,l,A,?gA”()() =0

a [?1%(&, ;()] + 3, Chiaa [?A] — 0

The dream functionals would satisfy:

d;c'am _ dre
Om [gA ] = Opn Cl 1A, — — O d [?H,@z]

n

(they are known for free spectra Mazac Paulos '18] ) ,

More pragmatically, we can try tom A] is small for A > A.
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Positive semidefinite functionals and rigorous bounds

Our 1D CFT is unitary Cim z 0.

Use inequalities to bound the allowed conformal data. [E-Showk,Pauios,Poland,Rychkov,
Simmons-Duffin,Vichi '12]

General numerical bootstrap setup:
impose a[ & 5] > 0 above a gap threshold A > A (with some extra conditions),
1

This can be done efficiently with Semi Definite Programming.
We use the powerful package SDPB [Simmons-Duffin *15]

Truncation is necessary, but the bounds are rigorous:

=0

a [f(n)] ~ Y Vier g F@D( ) ‘ ., bounds better and better for NV, — co.
A2
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Bounds for the first OPE coefficient Cﬁ LA,

SHOSIEDIRT: G+, A x) + Clz,l,AlgAl()() + 2”22 Clz,l,A”?A”()() =0

Upper bound alg.:

Using SDPB, find the functional such that

auPPGr[gﬁl] =1 ,

a'PPr[E,]1 20 for A > A= A,

upper : : = _
a [?H%] is maximal = — By,

—Bsper + C12,1,A1 + (>0 quantity) =0

2
Cl,l,A, = BHPPW
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h‘a,z,f,crlr;’c;*.r [ga]

i The two functionals for coupling g=0.5, N%r =20

afower [(f;A]

T —a———0 0o W ¥ A
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Strong coupling
[Ferrero Meneghelli ’21]

2 2 ﬁ ..
CHI(JJU'(’I' - J{()H'('F » ,..,[4:) derlvatlves

2

and extrapolati
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More experiments

Use Ci{l’i\_2 ; Cﬁm; as parameters

§1+.%3(A,X)+C§Q?AE+C§3 : T Ct Ay Ga0)+ 2 >4 Ciy, AGA )=

=G 14 Byt (A, Ay)

Repeat the previous algorithm but with A« = A, , and

Bgowe,.(Cf_z, Ci) = maximal value of a[§1+@2+(A2,A3)] , for a[?a]] = ]

Bupper(ng, Cﬁg) = — maximal value of a[ & |, 5 (s, ap], fOr a[%, ]=-—

When do the bounds become inm
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Allowed island for
a2 = C22 : a3 — C%

D 0.12 0.14

-0.0005
0.0010

-0.0015
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Accurate data for an OPE coefficient combining QSC and numerical bootstrap.

So far, finite but surprisingly good resolution, with input from only 2 states
of the spectrum.

Is it possible to shrink the bounds to zero?

Can we get C, with good precision?

Can we determine mathematically a CFT just from the spectrum?

4pt of local operators?
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Things to try to shrink the bounds:

More data from integrability
[AC, Gromov, Julius, Preti to appear]

(preliminarily, we see a gain of
precision by a factor of 50! )

Multi-correlator bootstrap (as for 3D Ising)

New types of algorithms? h
We can relax positivity between different states...

(preliminary: error goes down by another factor of ~ 2 at least)

Analytic functionals/PoI [Mazac Paulos *18] [Mazac *18]
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Can we use the analytic lightcone bootstrap in 4D ?

[Alday Maldacena '07]
o . [Komargodski Zhiboedov ’13]
Can control infinite families of operators  jritzpatrick, Kapian, Poland, Simmons-Duffin *13]

thanks to analyticity in spin

It works well at large N!

Vdz dz (z—2\2._ : 3
( - ) 9£+3,A—3(~'~': dDisc [G(z, Z)], [Caron-Huot '17]

122 ;32

Intriguing: dDisc is determined only by single-trace op’s at large N!

Was used iteratively in 1/N in the sugra limit (1 — c0)

4 45 [Aharony Alday Bissi Perimutter '16]
Sl R i e feci !
E.g. double-trace data N2 N4 [Alday, Bissi '17]
at strong coupling: 48 1 12768 1

Can extend this to finite A ?
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Thank you!
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