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Abstract:

In this talk, | will connect physical properties of scattering amplitudes to the Riemann zeta function. Specifically, | will construct a closed-form
amplitude, describing the tree-level exchange of a tower with masses m"2_n = \mu*2_n, where \zeta(\frac{ 1}{ 2} \pm i \mu_n) = 0. Requiring real
masses corresponds to the Riemann hypothesis, locality of the amplitude to meromorphicity of the zeta function, and universal coupling between
massive and massless states to simplicity of the zeros of \zeta. Unitarity bounds from dispersion relations for the forward amplitude transate to
positivity of the odd moments of the sequence of 1/Amu~2_n.
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The Riemann zeta function

* Introduced by Bernhard Riemann in 1859, a particular function of a
single complex variable:

()= —

n-
n=1

for Re(z) > 1. Extend to the rest of the complex plane by analytic
continuation.

* Many interesting properties, with deep connections to the distribution
of the primes:

¢(2)

p prime

log((z) = Z/-Gcc i) dz for w(x) = (# primes < )

x(x? —1)
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* The zeta function has been the subject of 150 years of mathematical
interest, and its properties have been intensively investigated.

-

.
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The Riemann zeta function

» Zooming out, we find a collection of additional zeros that all seem to

lie on the “critical line” where Re(z) = %))\
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The Riemann zeta function

» Zooming out, we find a collection of additional zeros that all seem to

lie on the “critical line” where Re(z) = %))\

C (% = ép’ﬂ,) =0
1 == 14.135
11y ~ 21.522

(We take Re(p,,) > 0
throughout.)
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The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie

on the critical line with Re(z) = 1.

If true it would have various nice number theory consequences, e.g.,

N 1
7(x) —/ : < —+/zlogx for x > 2657
o logt 8T

One of Hilbert’s 23 problems and a Millennium Problem

Currently verified through the first 12 trillion zeros

« XOther open questions:
* Are all the zeros simple ones?
* What can be be proven about the statistical properties of the zeros?
* What is the asymptotic behavior of ( on the critical line?
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Connections to physics

* There is a long history of ideas connecting the Riemann zeta function to
physics.

* Hilbert-Pdlya conjecture (attributed to remark of Landau to Pdlya in 1914):

Does there exist a quantum Hamiltonian
whose eigenvalues ar correspond to the

. imaginary parts of the nontrivial zeros of zeta?

)
* Montgomery’s pair correlation conjecture: monigomery (1973)
The correlation function for the normalized spacings of the nontrivial zeros

is: 2
- (Slﬂ’ﬂ‘bﬂ) +6(u)

mUu

This is the same as the two-point function for a Gaussian unitary ensemble. byson

» Other work in quantum chaotic nonrelativistic scattering includes

Gutzwiller (1983); Bhaduri, Khare, Law [chaodyn/2406006]; see also Srednicki [1105.2342]
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What about amplitudes?

* Rather than try to prove the Riemann hypothesis, can we gain any insight if we
somehow recast the zeta function as a relativistic scattering amplitude?

e (General idea;

Y \ 7 A

Interesting function Reinterpiat as Interesting new
from number theory scattering amplitude physics

Veneziano (1968):

Euler beta function : : -
_ T(@)T(y) Veneziano amplitude String theory

B(z,9) = Tar

SN -
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* Rather than try to prove the Riemann hypothesis, can we gain any insight if we
somehow recast the zeta function as a relativistic scattering amplitude?

* Indeed, the Veneziano amplitude itself can be written in terms of (:

_ : . | _ C(1+ a(x))
Ay(s,t,u) = B(—a(s), —a(t)) + B(—a(t), —a(u)) + B(—a(s), —al(u)) =
«(s,t,) = B(=a(s), ~a(t)) + B-a(®), —a(w) + B(-a(),—a@) = [ =cr5
However, this is somewhat illusory: the nontrivial zeros cancel ot entirely.
CA+z) _ 1. T(=3)
¢(=2) r(52)
Page 10/61
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* Rather than try to prove the Riemann hypothesis, can we gain any insight if we
somehow recast the zeta function as a relativistic scattering amplitude?

In this talk, we will construct a relativistic four-point scattering amplitude M (s, t)
that truly captures the nontrivial properties of the zeta function.

M(s, t) ¢(2)

Poles at s,u = m? for m,, real

Riemann hypothesis

Locality (simple poles) Meromorphicity

Universal coupling R?Simple zero conjecture

Dispersive bounds from analyticity /unitarity Positive odd moments of ;2 sequence

On-shell constructibility Hadamard product expansion

111111

CPT invariance Reflection of zeros across critical line
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* Most important feature: ¢ has nontrivial zeros that (appear to) all lie on a line

Connection with amplitudes: poles all lie on lines corresponding to real
kinematics, s, t, u = m?

1, .3
e o s = —(p1 +p2)°
' . t=—(p +}U3)2
",.*" ‘”*-.‘u u=—(py +ps)’=—-s—1t
2 4

Pirsa: 21100004 Page 12/61



* What about A(s) = 1/¢ (5 +is)?
x Poles with opposite-sign residues: tachyons

M(s,0)
5

4

3

VA
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+ivs) ,
¢ (3 +ivs)

x Only poles in the wrong places: s
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* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

0 2¢’ (5 + iy/3) ilogm 1

A(s) = — V(2 +15) + +
(s) 4./5 %U(4 2\[) C(%‘Hﬁ) ,é\/g 3_|_%
A(s)
0.05
. / : ’ =
200 400 600 800 +1000. /1200 1400
-0.05

e Polesat s = ;2
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* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

2¢’ (5 + iy/3) ilogm i

e (G+ive) | T a5 s+l

¥ (3+5Ve) +

i
_4\/3

Digamma function: ¢(z) = I''(z) /T'(z)
Poles at ¢/(—n) cancel trivial zeros at ((—2n)for integer n > 0
Pole at ¢(( canceled by 1/ (s + ;) term

No branch cuts: Hnb A(s +ie) — A(s —ie) =0
€E—r
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* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

D 2¢' (5 + iy/3) ilogm 1

* |n terms of the Landau-Riemann xi functions,

(2) =€ (% =+ ez:)

&(2) = 32(z — 1)/ (%) {(2)
B

[1]

™

b | =

Page 18/61
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* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

2¢’ (5 + i/3) ilogm 1

Als) = ¢ (L +iy/s) * 45 s+1

17 PG 3ve) +
s

Digamma function: ¢(z) = I''(2)/I'(z)
Poles at v)(—n) cancel trivial zeros at ((—2n)for integer n > 0
Pole at ¢/(0) canceled by 1/ (s + ) term

No branch cuts: hnb A(s +ie) — A(s —ie) =0
€—>
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* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

2¢’ (5 + iy/3) +i10gﬂ'_ i
¢ (3 +iv/s) 45 s+ 1

Als) =—# ¥ (L+ivE) +

* |n terms of the Landau-Riemann xi functions,

(2) =€ (5 +1i2)
£(2) = 32(z — )m™*/?T () {(2)

A(s) can be written very compactly as:

[1]

d

A(s) = - log E(v3),

M(s,t) = A(s) + A(u)
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M is the simplest possible amplitude corresponding to the Riemann zeta function
and satisfying three physical properties:

1. M is analytic everywhere except poles corresponding to the nontrivial zeros of
the Riemann zeta function, and these poles are real if the Riemann hypothesis
holds.
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M is the simplest possible amplitude corresponding to the Riemann zeta function
and satisfying three physical properties:

1. M is analytic everywhere except poles corresponding to the nontrivial zeros of
the Riemann zeta function, and these poles are real if the Riemann hypothesis

holds.

2. Each pole has positive residue as required by unitarity.

3. The forward amplitude satisfies

. &
lim 2 M(s,0) #£0

s—0 ds? s
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» Were the square roots necessary?

Yes: If we send s — s?in M(s,0) to eliminate the square roots,

then the forward amplitude scales with s* at small momentum.
%

This violates the s* scaling required by dispersion relations.

)

1000

| e
L

0.001
1076

10~9

0.5 1 5 10
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e Connection between low-momentum behavior and the zeros of zeta:

(’(_)_1 ./-1()_ 4_’_?‘3_{_(,_’_(:”(%) 1(+ﬁ+1 8)2
2 a0 TR T T T T oy T \T T g TSN
Catalan’s constant G = » "(—1)"/(2k + 1)
k=0
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e Connection between low-momentum behavior and the zeros of zeta:
-‘_‘J‘D [1

2 ‘
o=y o 4.6210 x 1072

[
using the Hadamard product form of the zeta function (more on this later).

n=1
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e Connection between low-momentum behavior and the zeros of zeta:

o ¢

p) .
co = Z P ~ 4.6210 x 102
TI-:] T

using the Hadamard product form of the zeta function (more on this later).

* Poles corresponding to the nontrivial zeros: ¢ (3 +ip,) =0

If the Riemann hypothesis holds, these poles are all at real, positive masses.

My = Hn

N
The poles have the correct (positive) residue required by unitarity:

fg iA(s + i€)ds > 0
.‘i:JU..‘i
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e Connection between low-momentum behavior and the zeros of zeta:

o ¢

p) .
co = Z P ~ 4.6210 x 102
TI-:] T

using the Hadamard product form of the zeta function (more on this later).

* Poles corresponding to the nontrivial zeros: ¢ (3 +ip,) =0

If the Riemann hypothesis holds, these poles are all at real, positive masses.

My = Hn

The poles have the correct (positive) residue required by unitarity.
Specifically, if the zero z,, = % + iu, has ordgr gns €(2) ~ (2 — z,)9", then:

j[( iA(s + ie)ds = 2mg,
.f-;:p._‘ﬁ_
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Connection between low-momentum behavior and the zeros of zeta:

o ¢

p) .
co = Z P ~ 4.6210 x 102
TI-:] T

using the Hadamard product form of the zeta function (more on this later).

Poles corresponding to the nontrivial zeros: ¢ (5 %+ ipn) =0

If the Riemann hypothesis holds, these poles are all at real, positive masses.

My = ,uﬁ,

The poles have the correct (positive) residue required by unitarity.
Specifically, if the zero z,, = % + iu, has order g,, ((z) ~ (z — z,)?", then:

jé iA(s + ie)ds = 2mg,
.f-;:p._‘ﬁ_

All simple zeros = Universal coupling of massive states
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Properties of A(s)
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* Locality: All poles are simple ones.

A(s) ~ 1/(=s + 12)

* Higher-degree poles would correspond to kinetic terms with too many
derivatives: a failure of locality. For example,

|
(—s + m?2)k

(O -m?)*p —

 Nonlocality in A(s) ~ 1/(—s + p2)* for k > 1 would correspond to an
essential singularity in the Riemann zeta function,

[

C(:) ﬁl el= zp )1

Locality in A +«—  Meromorphicity in ¢
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Analytic dispersion

relations




Which theories are possible?

Can any Lagrangian be a consistent EFT?

* Certain signs or magnitudes of couplings violate fundamental physics principles:
* Unitarity
* Causality
* Analyticity
* Thermodynamics

Couplings
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Which theories are possible?

Can any Lagrangian be a consistent EFT?

* Certain signs or magnitudes of couplings violate fundamental physics principles:
* Unitarity

* Causality

* Analyticity

* Thermodynamics

“infrared consistency”

Couplings

Pirsa: 21100004 Page 33/61



Can any Lagrangian be a consistent EFT?

» Certain signs or magnitudes of couplings violate fundamental physics principles:
* Unitarity
* Causality
* Analyticity
* Thermodynamics

* Examples:
» Standard Model EFT
* Flavor physics
* Higher-curvature terms
* Massive gravity
* Einstein-Maxwell theory
e Scalar theories
* a-theorem
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Can any Lagrangian be a consistent EFT?

* Certain signs or magnitudes of couplings violate fundamental physics principles:
* Unitarity
* Causality
* Analyticity
* Thermodynamics

e Qur M(s,t) built from the zeta function will by definition satisfy the requirements
of analyticity and unitarity for scattering amplitudes.

e Question: What happens if we run M(s, t) through the mechanics of analytic
dispersion relations?
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We’'ll first briefly review how infrared consistency bounds the coefficients of an EFT,
based on analyticity, unitarity, and causality.

Example EFT. massless scalar with shift symmetry

[ A2 B e s
= —E(()@) + 37 (09)
Two-to-two scattering amplitude: o e
M(s,t) = 2¢ (52 + 12 + u?) “‘n,""
Mis, t) = A S ; u ',,’”*..“
Forward amplitude (in state = out state):
| dc 4 s = —(p1 + p2)°
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The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

- = o B S
- g
7" N |"— 4de 1 ds _
/ b e = = —.%J'M(S,U')
/ \ M 21 Jo 8
g i | ]
/ \ as
— - = _‘,-'\/[ S, U
b ‘] 2mi ,ﬁr s3 (5,0)
AL ACS A AL A A A S S A -
. M et s B use analyticity to deform the contour
| I 3
\ !
\ /
\ 7 4
\ ¥ 4
AY /
~ 7
M 2 L -~

Pirsa: 21100004
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The Wilson coefficient of interest can be extracted via a contour integral of the

forward amplitude:

If. “""\-
-~ ~ |,‘-}
” e
V4 N
7 N
/ X
/ \
I ¢ L]
I——-p.——-.. - —_— P =
VAT SN U 7% i 4
|
\ /
\ /
\ /
\ /
N 7/
~ 7
\ -~
~ -
"‘-.__‘_____.r‘

4e 1 ds

— = — ¢ —M(s,0
M4 " 2mi Jo 3 )
1 ds
= ~M(s,0

2mi Jor 83 %,0)

.0 00\ g
(/ +/ ) " Disc M(s, 0)
—x0 0 =

boundary term at infinity vanishes

1
271
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The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

7 / My |2 4c 1 j{ ds M(s, 0)
N\ —_—— —_ S,
/ \\ _"1[4 2?]-2 C S%
/
1 ds
/ \
= — M(s,0
bl \ 2mi ﬁ, §3” (5,0)
ST o PO : 0
A AA A OO 1
1 ! = (/ / ) —leC M(s,0)
\ / 271 0 S
\ ! l o]
3 ¥ — 0
\\ // \1“ 0 5 (b )
Tag S crossing symmetry: M(s,0) = M(—s,0)
o o ISR I I}
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The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

& = T 2 |‘,_ _\
’ N dc 1 [ ds
/ ke = — — Disc M(s,0
/ & WA i fy Ao Ms0)
/! .
1 [ ds
h o 2 = — 3 im[M(s + i€, 0) — M(s — i€, 0)]
P e | mJo
R e L [ ds :
B INE R = — — lim [M(&+ i€, 0) — (M(s + i€,0))"]
\ I ‘\'”T Jo 8% =0
\ /
\ / Schwarz reflection principle:
" g M(s*,0) = (M(s,0))"
~ 7
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The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

- = Bl i g S
o g ’ 2 Yo 1 = dsD_ M(s,0)
# = — — Disc M(s, (
/ \ M4 im ), s° ’
/ \ )
1 [ ds _ .
- i = — [ S lim[M(s + ie, 0) — M(s — i€, 0)]
¢ ] i Jg  8° e=0
T Sy B = — - 00
AT G —— — 1 ds .. o ' .
e S aL = — — lim [M(s + i€, 0) — (M(s + i€, 0))*]
\ i 1T 0 52 e—0
: d 2 [~ ds
} / = — / —TIm M(s, 0)
\ / ?T . {_} -S“j
N / -
M 5 2 / ds (s)
S - = _no— 5
-~ - 0 82

RSP [ \ﬂ'

(3
using the optical theorem (unitarity):
Im M(s,0) = so(s)

= ¢ > )
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The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

T TSN s ﬂ
s b 4c 1. [ ds
o — —_—
# S _|1 N =g q%Dh( M(s,0)
/!
/ \ 1 [T ds _
iJr C \1 T Jo 83 e0 (5 + 7€, 0} — M(s — e, 0)]
AAAAAAA——] EAARAA 1 [ d.
s RN =Y = — (—;"IIIII[M(S‘F!F()—(’\/[(S—F!FU))]
\ J (X8 0 52 e—0
¥ / = — / —:Im M(s,0)
\\ / ﬂ—__o S
p Peg /"“’ ds (s)
~ e - _U §

using the optical theorem (unitarity):
Im M(s,0) = so(s)
More generally, 42k

lim
s—0 ds2k

M(s,0) >0
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* Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

M(s,0) = Z Coks2F

k=0

¢ Extract the Wilson coefficient with a contour integral,

1 ds
op. = —— M(s.,0
2k 2 5% g2k+1 (5,0)

2 [ ds ok
== / TZO’(%) + c(2F)
o, 0 s Ds‘

* Boundary term:

o 271 - g2k+1

; 1 ;
2R — 56 45 r(s,0)
. |(r,-|:r_‘>L

a1 . 4k+2
Nonzero ¢**) would mean that =(z) grows at least as fast as e**

oo

(i.e., growth order 4k + 2), contradicting known growth order 1.
— c(2k) — ¢
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* Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

M(s,0) = Z Coks2F

k=0

* The properties we have proven for M(s, t) give a beautiful relation between the
Wilson coefficients and the nontrivial zeros:

o0
z_: 2k+1)

2
e.g., —
T

,_L
-~
g

~
Pl

A% &
I [l
Mg 11

——
&=

2
"6 Riemann hypothesis =— ¢ > 0

_,

3
|

—

2
110

M?

]
bn,

|
o
p~
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For example, the s? coeﬂ‘icient gives us the remarkable identity:

2
= = 11111 4 M(s,0)

2 s—0 (1‘3

1 D ]
=128+ 9 (3) — ¢f (3)

n=1
using the shorthand ¢,,(z) = ¢\ ()
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For example, the s* coefficient gives us the remarkable identity:
1 {2
o = — lim — ( M(s,0)

2 50 dg2”

__q0e 1 E) 11y 641y

Can prove (with great effort!) by computing analytic expressions for derivatives of

cZiatz— l using polygamma identities and the product form of the zeta function,

=

2(2: ) i H ( ) o [l (1 : i)

Ht ~T
zn nontrivial zeros
which comes from the Hadamard expansion of the xi function,

&(z) = £(0) 11 (1 . zin)

z, nontrivial zeros

What is remarkable is that our amplitude construction allows for much

simpler, physical derivations of such identi:ies!

using the shorthand (,(z) = (\"/(z)

C:‘? (Z) - [Cn (Z)]‘i‘
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0.060 |

0.058 |

co ~ 4.6210 x 10~2
0.056 | ey ~ 2.8835 x 1077
0054 c4 = 6.4273 x 10712
ce ~ 1.5807 x 10~1¢
0.052 | _ o1
. cg ~ 3.9465 x 10™°
0000 c10 =~ 9.8805 x 1072¢
0.048 |
0.046 P P R
0 20 40 60 80 100 120 140
S N

Numerical tests of ¢4 ¢ 5 1o confirm prediction to within relative error of 10",
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Other properties




* Qur amplitude M(s,t) describes a theory of two types of massless scalars,
®1 and ¢, exchanging a tower of massive states X in the s and « channels for
the process:
P12 —> Q102

« We alternatively could have defined M(s,t) as A(s) + A(t) + A(u)to have full
Bose symmetry, in which case our amplitude would describe single-scalar
scattering ¢¢ — ¢¢

P1 01 P1 1
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* Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

OO

M(s,0) = Z Cop 82K

k=0

* The properties we have proven for M(s,t) give a beautiful relation between the
Wilson coefficients and the nontrivial zeros:

i3 2

Cok = Z 2(2k+1)
n=1 Hn
e.g., Co = )
n 1 .H’n
= U
g2 = Z 1S Riemann hypothesis — cg; > 0
n=1""n
oQ '3
C4 = Z 10
n=1 Hln
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» Based on the properties of .A(s), our Riemann zeta amplitude is on-shell
constructible from the UV amplitudes ¢;02 — X:

1

M(s,t) = ZMfﬁl¢2—>X(p1:p"z'!)T“Mf‘)le—‘X(pﬂ‘ P4)
X
1
=il Z JM;&lqbz—)-X (pl-. p4)__72~’aw P12 =X (p:;,pz)
= —u + py

e Universal coupling: M, s,— x (p1,p2) = constant for all X (=1 in our units)

* We thus have the elegant result:

dl
A(S): Og Z_'S_i_”
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* Based on the properties of .A(s), our Riemann zeta amplitude is on-shell
constructible from the UV amplitudes ¢102 — X:

1

M(s,t) = Z My, p—x (D1 pz)WMm da— X (P:_%,\}.M)
X ) i
1
+ ) Mo, g x(P1,pa) ————5 Mo go—x (P3, p2)
= —u + M

e Universal coupling: M, s,— x(p1,p2) = constant for all X (= 1 in our units)

* We thus have the elegant result:

~ dlogZE(ys) 1
A= ds - ; —5 + 2

1 1
t) = : -
Ms, )\ ;(s+p3ie+u+ﬂzie)

T i
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* Proof:

d log =(/s)

ds

Let A(s) = A(s) — %ﬂz , Where A(g) = —

We have previously shown that A(s) has zeros only at s = ;2 and (if we allow the
possibility of degenerate .,) all of the residues are 1.

— A(s) is entire.

Expand A(s) in a Laurent series about s = oo,
The definition of A(s) and the absence of a pole at infinity in A(s) imply:

A(s) is bounded.

Liouville’s theorem — A(s) is constant.
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* |ntegrating our result
d 10{_) Z
—S + ;J

(

A(s) =
gives the product form for the Riemann-Landau xi function
(o =co) I (1- —) o = £ £
. nontrivial zeros W
C(2) Z(?f(_@)l} rﬂ(f 2) H (1 _ _)
. ﬁ (1+ %) I

e Using the Weierstrass product 1'(z)
1. we have...

along with (( k)

Page 54/61
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* Functional equation ¢(z) = 2°7* ! sin(7z/2)'(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]"
together imply that the nontrital zeros enjoy a four-fold symmetry:

|i

% +iiu” % + i

—
=

i 3 sk
5 T ULe e 5 — i
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* Functional equation ¢(z) = 2°7* ! sin(7z/2)['(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]"
together imply that the nontrivial zeros enjoy a four-fold symmetry.

— Im M(s,0) is nonzero only because of the Feynman ie deformation in propagator,
ImM(s,0) = Z m6(£s — p?)
L

L3

 Symmetry of zeros <— Momentum conservation in optical theorem:
o # 0 only for on-shell X.
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* Functional equation ((z) = 2 ~Llsin(rz/2)T(1 — 2)¢(1 — 2)

and Schwarz reflection ¢(z* [C 2)]*
together imply that the nontrivial zeros enjoy a four-fold symmetry.

— Im M(s,0) is nonzero only because of the Feynman ie deformation in propagator,

ImM(s,0) Z (ks — ,u

 Symmetry of zeros <— Momentum conservation in optical theorem:
o # 0 only for on-shell X.

i, = M —iW, violating RH, gives extra Im M(s, 0) o WV for W < M
Symmetry of zeros: come in pairs £W «— Growmg/decaylng modes (CPT)
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* Functional equation ¢(z) = 2°7* ! sin(7z/2)I'(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]"
together imply that the nontrivial zeros enjoy a four-fold symmetry.

— Im M(s,0) is nonzero only because of the Feynman ie deformation in propagator,

ImM(s,0) = Z mé(ds — po)
I

 Symmetry of zeros <— Momentum conservation in optical theorem:
o # 0 only for on-shell X.

i, = M —iW, violating RH, gives extra Im M(s,0) oc W for W < M
Symmetry of zeros: come in pairs =W <— Growing/decaying modes (CPT)

 Zero-counting: N(T) =

h
1 VT
= —/ o(s)ds
0

12[C(2) =0& 0 < Im(z) < T}

TT .
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We have constructed an amplitude whose physical attributes correspond to the
known or conjectured properties of the nontrivial zeros of zeta.

e Open question: What dynamics gives rise to M(s,t)?
h
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We have constructed an amplitude whose physical attributes correspond to the
known or conjectured properties of the nontrivial zeros of zeta.

e Open question: What dynamics gives rise to M(s,t)?

e Other future directions:
* Spin for intermediate states
* Zeta function universality

¢ Dirichlet L-functions
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