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Abstract: A toy model due to Spekkens is constructed by applying an epistemic restriction to a classical theory but reproduces a host of phenomena
that appear in quantum theory. The model advances the position that the quantum state may be interpreted as a reflection of an agent's knowledge.
However, the model fails to capture al quantum phenomena because it is non-contextual. Here we show how a theory similar to the one Spekkens
proposes requires only a single augmentation to give quantum theory for certain systems. Specifically, one must combine all possible epistemically
restricted classical accounts of a quantum experiment. The rule for combination is simple: sum the nonrandom parts of all classical predictions to
arrive at the nonrandom part of the quantum prediction.
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Initial goal: To express quantum theory in terms of

phase space probability distributions.

What we actually have: A formulation of quantum theory in terms of

phase space probability distributions for prime power dimensions.

Main message: There exists a way to combine the predictions of

epistemically restricted observers to reproduce quantum predictions.

Our main equation: AP(E|E,p) = % Z AR}-(E|8, P)
F
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Motivation and epistemically restricted theories

Discrete phase space and discrete Wigner functions

Quasiprobabilistic quantum theory: states, channels, and measurements
Classical frameworks and epistemically restricted states (borrowing

tools from tomography)

* Quantum theory from collection of epistemically restricted theories

* Conclusions
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Do quantum states represent physical reality
or an agent’s knowledge of physical reality?

Are quantum states ontic or epistemic objects?
N

Spekkens and collaborators have developed a number of
theories that demonstrate how a classical ontological theory
subject to an epistemic constraint can reproduce substantial
aspects of quantum theory.

RW Spekkens, Physical Review A 75 (3), 032110 (2007).
SD Bartlett, T Rudolph, RW Spekkens, Physical Review A 86 (1), 012103 (2012).
RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).
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Epistemically restricted classical theories

Sketch of the idea:

« Start with a classical ontological theory that
describes the kinematics and dynamics.

* Epistemic states are classical statistical
distributions over ontic states.

» Specify criteria that determine the form of
the “legal” epistemic states. (l.e. That which
is knowable due to some principle.)

RW Spekkens, Physical Review A 75 (3), 032110 (2007).
SD Bartlett, T Rudolph, RW Spekkens, Physical Review A 86 (1), 012103 (2012).
RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).
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Epistemically restricted classical theories

Phenomena arising in epistricted theories| Phenomena not arising in epistricted theories
Noncommutativity & Bell inequality violations
Coherent superposition Noncontextuality inequality vieolations
Collapse Computational speed-up (if it exists)
Complementarity Certain aspects of items on the left
No-cloning
No-broadcasting
Interference
Teleportation
Remote steering
Key distribution
Dense coding
Entanglement
Monogamy of entanglement
Choi-Jamiolkowski isomorphism
Naimark extension
Stinespring dilation
Ambiguity of mixtures
Locally immeasurable product bases
Unextendible product bases
Pre and post-selection effects
Quantum eraser
And many others...

TABLE II: Categorization of quantum phenomena.

RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).
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Epistemically restricted classical theories

Phenomena arising in epistricted theories
Noncommutativity
Coherent superposition
Collapse
Complementarity
No-cloning
No-broadcasting
Interference
Teleportation
Remote steering
Key distribution
Dense coding
Entanglement
Monogamy of entanglement
Choi-Jamiolkowski isomorphism
Naimark extension
Stinespring dilation
Ambiguity of mixtures
Locally immeasurable product bases
Unextendible product bases
Pre and post-selection effects
Quantum eraser
And many others...

Phenomena not arising in epistricted theories
Bell inequality violations
Noncontextuality inequality violations
Computational speed-up (if it exists)
Certain aspects of items on the left

TABLE II: Categorization of quantum phenomena.

Our question: is there a mathematical way to get from epistemically
restricted classical theories to quantum theory?

RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).
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Epistemically restricted classical theories

Sketch of the idea:

« Start with a classical ontological theory that
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Epistemically restricted classical theories

Sketch of the idea:

« Start with a classical ontological theory that
describes the kinematics and dynamics.

* Epistemic states are classical statistical
distributions over ontic states.

» Specify criteria that determine the form of
the “legal” epistemic states. (l.e. That which
is knowable due to some principle.)

Are there any good reasons to use this set
for the ontic states of discrete classical
systems?

N

('m now going to focus on quantum systems with finite—and
eventually prime —dimensional Hilbert spaces in this talk.)
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Epistemically restricted classical theories

One can represent quantum states with Wigner functions.

They exists for both discrete and continuous systems.

30

For the stabilizer subtheory of quantum mechanics, Wigner
functions can be used as a hidden variable model (HVM).

This motivates the definition of the classical theory of d-level
systems with this discrete phase space.

Next step is to find an epistemic restriction that yields the HVM.
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Epistemically restricted classical theories

“Guiding analogy:

A set of observables is jointly measurable if and only if it is commuting
relative to the matrix commutator.

A set of variables is jointly knowable if and only if it is commuting
relative to the Poisson bracket.”

[RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).]
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Epistemically restricted classical theories

The epistemic restriction:

* Knowable variables can only be linear combinations of position and momentum
or quadrature variables:

aqg+bp where a,b€ Zg4

* Jointly knowable variables must commute via poisson bracket (PB): [f, g]pB =0

N
There exists a reasonable discrete analogue of the PB using finite differences.

The value of the discrete PB for two quadrature variables is equal to the symplectic
inner produce of the two variables.
( 0
—1
0

0

\ :

[f,9lpe = {f,9) = f'Jg where J=
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Epistemically restricted classical theories

* For the systems we are considering, we only need two dimensional phase space,
i.e. one position and one momentum variable.

» States of maximal knowledge are uniform distributions over lines in phase space.
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Epistemically restricted classical theories

“... why bother with the symplectic stuff in this talk?”
The epistemic restriction must be preserved by the dynamics.
Affine symplectic transformations map the set of quadrature variables to itself.

(These are symplectic transformations followed by a displacement across
phase space.)

These are the “legal” transformations for the epistemically restricted theory.
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Epistemically restricted classical theories

Main messages:

For systems with a single degree of freedom, the ontic states are given by a
single position and momentum coordinate in phase space.

The epistemic states are lines representing a uniform probability distribution
over certain ontic states.

The legal transformations are affine symplectic transformations.

Our guestion:

How can finite-dimensional quantum systems be represented in terms of
such a structure?
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Discrete phase space

Assume the Hilbert space dimension, d , is prime.

Here we have a discrete phase space when d = 7 .

Arithmetic performed on such a space will be modulo d.
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Phase-point operators

A complete, Hermitian operator basis indexed by phase space points: 4.1
p=)_ Qalp)Aq
The A,’s are orthogonal relative to the Hilbert-Schmidt inner product:

Tr[AoAg] = ddqag

Key property: the average of phase-point operators along any line gives
a projector onto a pure state.

A complete set of parallel lines (a striation) defines an orthonormal basis
for the Hilbert Space.

Bases associated with different striations are mutually unbiased.

W. K. Wootters, Ann. Phys. 176, 1 (1987).
K. S. Gibbons, M. J. Hoffman and W. K. Wootters, Phys. Rev. A 70, 062101 (2004).
D. Gross, J. Math. Phys. 47, 122107 (2006).
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Phase-point operators for a qubit

An arrow means “average.”
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Discrete Wigner functions

* The expansion coefficients for density matrices over the phase-point operators:

=Y Qelde,  Qlalp) = ~TrlpA

* Remember: the average of phase-point operators along any line gives a
projector onto a pure state.

» Discrete Wigner functions give proper marginal distributions.

3 Qlalp) = 3 TrlAus

aE aEX

= Tr [|4)(4]p]
= P(4]p)
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Discrete Wigner functions

=Y Qelde  Qlals) = STx[pd

Properties of Q(a|p):
., * Real distribution on phase space.
* Normalized to 1.
e Sum over any line is the probability of the state associated with the line.

* Can have negative values.
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Discrete Wigner function examples
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Quasiprobabilistic representation of quantum theory

* Preparation p:
Wigner function Q(c|p)

* Channel &:
, Transition quasiprobabilities Q¢ (8|a)

* Measurement outcome E':
Response quasiprobability Q(F|3)

P(E|E,p) =) Q(E|B)Qe(Bl)Q(alp)
B,
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Channel: example of transition quasiprobabilities

Qu(fla)

) 172 -2l 172

121172 11/2 ) 1/2

Rotation of a qubit by 90°

around the +y axis. 172 | 1/2|1/2 |-1/2

1/2 |-1/2|1/2 | 1/2

00 01 10 11

8
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Measurement: examples of response quasiprobabilities

Quasiprobability of getting the outcome:

Normalization differs from

that of Wigner functions.
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Quasiprobabilistic representation of quantum theory

P(E[E,p) = ) Q(E|B)Qe(8l)Q(alp)
B,

+a) (=1 |2

0]12
0

Channel:

1/2 11/2 |-1/2

Meas:
-1/7211/2 1 1/2 |—|—Qj><—|—aj|:

1/2 11/211/2

1101110
1/2 |-1/2] 1/2 00 01 10 11

00 01 10
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Quasiprobabilistic representation of quantum theory

P(E[E,p) = ) Q(E|B)Qe(8l)Q(alp)
B,

P(|+z)|U, |+z)) =
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Epistemically restricted probability distributions

“To specify an epistemic state on must specify:

1. the set of quadrature variables that are known to that agent and

2. the values of these variables.”

RW Spekkens, Quantum Theory: Informational Foundations and Foils, 83-135 (2016).
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Epistemically restricted probability distributions

For each component of an experiment
(preparation, channel, measurement outcome),

1. Choose a “framework” that imposes a certain form of the
probability distribution.

2. Construct a restricted probability distribution [/ that conforms to
the framework applied to Q.

Each distribution I is a non-negative probability distribution.
The set of all R’s for all possible frameworks contains the same
information as ().
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Epistemically restricted states

Framework choice is a striation (B)
Get RB by averaging the Wigner function over each line.

All other marginals will then be uniform.

1 | 3—=v3 | 1++3 V3 i
Qalp) : 8~ 3143 | 1-3 — 50+ 511)

i
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Epistemically restricted states

Recover () fromthe R’s : AQ (alp) = ZARB alp)

3—vV3 | 1++3
3++v3 | 1—-+3
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Epistemically restricted channels

* Framework choice is a symplectic matrix

* These are the “legal” symplectic matrices for a qubit

&

() =)
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Epistemically restricted channels

 “Displacement classes” associated with a symplectic matrix S

13
« Different displacement classes are labeled with displacements

« A set of pairs of points (@, 3) suchthat 8= Sa+ 46

()

00 01 10 11
o
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Epistemically restricted channels

 “Displacement classes” associated with a symplectic matrix S

« Different displacement classes are labeled with displacements

« A set of pairs of points (@, 3) suchthat 8= Sa+ 46

() ()

00 01 10 11 00 01 10 11 00 01 10 11
(84 ls] (0%
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Displacement classes

Analogy between states and channels

States:
1. Average quasiprobabilities of a line

2. Set value at all points in the line to this probability

Channels:
1. Average transition quasiprobabilities

corresponding to those of an affine symplectic

transformation

. Set value at all points in the displacement class

to this probability *
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Epistemically restricted channels

Get R°(B|a) by averaging Q(B|a) over each displacement class.

8 00

Qu(B|a) 01

10
11

-

00
01

10
11

1/2

1/2

~1/2

1/2

—1/2

1/2

1/2

1/2

1/2

1/2

1/2 172

1/2

~1/2

1/2

1/2

00

01

10

R

A\

00 01 10

11

11

«
\
00

01

10

11
00 01 10
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Epistemically restricted channels

Get R°(B|a) by averaging Q(B|a) over each displacement class.

B 00)1/2]1/2 |-1/2|1/2

QU(6|04) : 01 |-1/2]1/2 11/2 |1/2
10 |1/2)1/21/2 }-1/2

11 | 1/2 172 172 1/2
00 01 10 11 <«

R \
A 4

0olo 0 0 00

12| 1/2 0 0 o1l o] o

1/2]1/2 1/2] 0 |1/2] 0 10 1/2]1/2

0]O0 120 o |1/2] o 11101} 0
00 01 10 11 00 01 10 11 00 01 10 11 =
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Epistemically restricted channels

Recover Q(8la) fromthe R's: AQe(Bla) =) ARZ(B|a)
Sy

B 00]1/2)1/2 |-1/2 (Channels must be unital.)

Qu(Bla) : 01 |-1/2]1/2 | 1/2
1011/2|1/2|1/2

11 | 172 |-1/2f 172
00 01 10 11 «

RA VX

olo 0 0 00

12| 1/2 0 0 o1l o] o

1/2|1/2 12| 0 |1/2] 0 10 | 1/2] 1/2

0]0O 120 o |1/2] o 111010
00 01 10 00 01 10 11 00 01 10 11
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Epistemically restricted measurements

Framework choice is a striation (B’).

Get R®' (E|B) by averaging Q(E|B) over each line.

3—v3 | 1++/3
3+4v3 | 143
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Epistemically restricted measurements

Recover () from the R’'s:

AQ(B|B) = ZARB (E|B)

3—3

1++/3

3++/3

1 -3
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Prediction of an epistemically restricted observer

R7(E|E,p) = > R” (B|B)RE(B|)R” (alp)
B,

F=(B',S,B)

It is not the quantum mechanical probability.

However, the probability R (E|E, p) is a reasonable
number between 0 and 1.

It is usually a bad prediction.
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Prediction of an epistemically restricted observer

R¥(E|E,p) = )  R” (E|B)RE(Bla)R” (alp)
B,

F = (B',S,B)

For most values of B’, S, and B, this prediction is what

we would expect if p were the completely mixed state.
3

In our final equation with the A's,
most of the terms in the sum will be equal to zero.

To avoid this, we need to set B’ = SB.
Then we call the framework “coherent.”
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Motivation and epistemically restricted theories

Discrete phase space and discrete Wigner functions
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Classical frameworks and epistemically restricted states (borrowing

tools from tomography)
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3

* Conclusions
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Collecting all the classical predictions

Can we get the quantum prediction by combining the

“nonrandom parts” of all the classical predictions?

&=

Yes, we need a “minimal reconstructing set” of symplectic matrices.

This is a set of d? — 1 symplectic matrices such that the difference

L]
between any two of them has nonzero determinant.

Such a set exists if d = 2,3,9,7,11.

We do not know whether such a set exists for any other dimension.

[H. F. Chau, IEEE Trans. Inf. Theory 51, 1451 (2005).]
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Collecting all the classical predictions

Can we get the quantum prediction by combining the

“nonrandom parts” of all the classical predictions?

e

For any odd prime—and we can generalize to odd prime powers

—if we use all symplectic matrices, we have

1
_F

k

The 1/d factor accounts for a redundancy introduced when all

symplectic matrices are used.
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Collecting all the classical predictions

1
General equation: ~ AP(E|E, p) = Z Z AR (E|E, p)
F

3

When using a minimal reconstructing set, Z = 1.

When using all the symplectic matrices, Z = d .
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Collecting all the classical predictions

1
General equation: ~ AP(E|E, p) = Z Z AR (E|E, p)
F

3

Is it surprising that we can get the quantum prediction?
Not really. We started with quantum theory via the Wigner function.

In order to start with just the R’s, we need constraints that enforce
the “legality” of the various probability distributions.
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What does it mean?

This mathematical method of combination does not connect with
common notions in probability theory.

There is no obvious state of affairs or ontology that presents itself.

To bridge the “gap” between epistemically restricted theories and full
quantum theory, one is forced to make a mathematical step that does
not easily fit into a principled framework.

To be clear, this does not imply that an epistemic interpretation of the
quantum state must be abandoned. We’ve just looked at one specific
approach.
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Future research directions

Search for a “native” description of the global constraint on the R’s.
3

Work on extending to composite numbers.

Engage with QBists.

Explain how contextuality is restored.

Explore connections with decoherence.
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Epistemically restricted classical theories present a compelling argument

for an epistemic interpretation of the quantum state.

One way to reach full quantum theory from such classical theories

requires a simple—yet unusual—combination of the classical predictions.

This can be thought of as one way in which quantum theory requires us

to go beyond classical probability theory.

arXiv:2107.02728 [quant-ph]
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Epistemically restricted classical theories present a compelling argument

for an epistemic interpretation of the quantum state.

One way to reach full quantum theory from such classical theories

requires a simple—yet unusual—combination of the classical predictions.

This can be thought of as one way in which quantum theory requires us

to go beyond classical probability theory.

Thank you for your attention!

arXiv:2107.02728 [quant-ph]
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