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Abstract: The spacetime in the interior of a black hole can be described by an homogeneous line element, for which the Einstein-Hilbert action
reduces to a one-dimensional mechanical model. We have shown that this model exhibits a symmetry under the (2+1)-dimensional Poincare? group.
The existence of this symmetry provides a powerful criterion to discriminate between different regularization and quantization schemes. It also
unravels new aspects of symmetry for black holes, and opens the way towards a rigorous group quantization of the interior. Remarkably, the
physical 1SO(2,1) symmetry can be seen as a broken infinite-dimensional symmetry. This is done by reinterpreting the action for the model as a
geometric action for the BMS3 group, where the configuration space variables are elements of the algebra bms3 and the equations of motion
transform as coadjoint vectors.
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Motivations i

Symmetries: Gauge vs Physical
@ Play a central role in quantum theories
@ GR rests solely on gauge symmetries, diffeomorphisms

@ Symmetries interplay with boundary conditions, gauge can become physical

@ Understand classical and quantum symmetry-reduced models in GR
e Lots of things known about FLRW cosmologies

@ Recent work on BH interior

e Recent work on SL(2,R) symmetry in FLRW
o We want to extend this to the BH interior
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Roadmap

@ Start from minisuperspace BH interior

@ Reveal is0(2,1) symmetry on phase space

@ Relate this symmetry to a “hidden” symmetry of the action

@ Embed the Poincaré group into BMS3

@ Reinterpret the previous results in terms of BMS3 representations

e Opens many doors (quantization, generalization, inhomogeneous case, relation to
boundary symmetries, mass evolution,...)
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Classical Theory

Schwarzschild BH interior

@ Radial coordinate becomes time-like.
1
ds® = — (¥ — 1) dT? + (% — 1) dr® + Tdez,

@ Described by Kantowski-Sachs cosmology:

ds® = —N*dt* + 87\/2dx2 + V4dQ?,
1

N

e homogeneous as in LQC minisuperspace

Spatial integration cutoff: x € [0, Lo]

@ Einstein-Hilbert action reduces to a 1D mechanical model, invariant under time
reparametrization
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Lapse and cutoff

Regulator or energy level?

Time diffeomorphism allows for a (field dependent) lapse redefinition

Vi > » Vi 8V> . 5 2
N := LoN,y/ — ds® = — 12N> L de® + 2 %dx VidQ
, ofNpy/ 5 % S A IA + Vi + Wi ;

Vi(WoV|{ -2V, d 1

we introduce the proper time gauge (dr = N,dt) and drop the boundary term,

Vi(VoVi — 2V, V.
s(ﬂ[v,-]:de 3 4 MGl )|
2V:
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Lapse and cutoff

Regulator or energy level?

Time diffeomorphism allows for a (field dependent) lapse redefinition

N = LONM/%, ds® = — ézi\}zd# T %‘fdﬁ + WidQ?,

Vi(VuV{ —2VviV3) d ( 1
sihin il = [ ae |+ ST 1 B (e (ve)')]

we introduce the proper time gauge (dr = N,dt) and drop the boundary term,

S(T)[V,]:/dfr I:}Zg—F Vl(V2V21\;22V1V2)] .
1

A How can the IR scale disappear? The scalar constraint imposed by the lapse
translates into the fact that the Hamiltonian for 7 (H) is L

0S4 >
5N, 0 <« 0

We need to remember this while inserting the solution into the metric

BH interior symmetry 09,/09/2021

Pirsa: 21090009 Page 7/25



Hamiltonian setup

@ Equation of motion for the lapse

5SL) , 1 |[wW Vv
— 0 <~ L(} — D 5 .
@ We perform a Legendre transform of S(7):
) P _ wvi-wiv
S(T):/d’r (P;V;'—H): 1 ¥
P, = -4
Vi
1 ASRAZ 2
H=—-P, | ViP1 — ZVLP> | = — ~ Lg.
2 ( 1P =5V 2) 2\/2 Vi 0

@ 4-dimensional phase space with the Poisson brackets {V;, P;} = §;
e Time evolution: O :=d,0 = {0, H} + 9,0
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Classical solution ,

-

Inserting these solutions in the metric, and
V= é(,}_ . 7_0)2 changing the variables as:
2 b
2 1 A
P = =g T, =V 2 "
A(’T = Tg)2 ’ 0
> we recover the standard Schwarzschild BH
Vs = B(T o TD) . E(T . 7'0)2 : interior metric with mass:
> 2 M — BVA
P> = — : WBLs
T —T0
First Integrals . :
B/LO IS the Komar charge assoc|ated to
Vi P2 the Killing vector 0.
A=22 B=ViP . :
BH interior symmetry 09/09/2021 7/16
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i50(2,1) algebra

@ Check if and at which stage the Poisson brackets of V; and its derivative form a JiF |
closed algebra:

o Vo sl(2,R) :
Vo ={Vo,H} = —V4P; — VuP :=C C={C,H}=H.

C is the generator of isotropic dilations of the phase space:
"G p =P, el"CY v = eV, Vie{l,2}.
The brackets are:
{C,Vo} =V, {Vo,H} = C, {C,H} =—H.
The Casimir is:

Coa,r) = —C> —2HV, = —B* < 0.
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i50(2,1) algebra

@ Check if and at which stage the Poisson brackets of V; and its derivative form a JF|
closed algebra:

o Vs sl(2,R) CVH
@ Vi: extends to iso(2,1)

Vi ={Vi,H} = -V1P, := —-D D={D,H}:=A.
L = S (Va—H).» K L (Vs + H) =G
Jz — '\/E 2 ) i _ \/E 2 Z 4 T 2 ‘
1 1
I_IX D; y \/E( 1 ): 0 \/5( 1 )

that correspond to the generators of (2+1) Poincaré group. The two Casimirs are given by
G =Ng—N;-Ny~0, C2 = jzMo + kyMy — Myky = 0.

@ The Casimir conditions reduce the 6-dimensional Lie algebra back to the original four
dimensional phase space

@ The Black hole interior carries massless representation of (2+41) Poincaré group
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Symmetries

The is0(2, 1) algebra encoding the dynamics is linked to an invariance of S under
ISO(2,1) = SL(2,R) x R:
@ Mobius transformation on proper time

Tl—)f:”':aT-I_b with ad —be =1,
ct+d
. V()
Vi— Vi(T) = ' .
! !(T) (CT+d)2

@ Abelian transformation on VW,

-.\
il
-a
I
q

The induced variation of the action yields a total derivative as

AS /d 4 (v (o + BT + y7°) i
= T | — — (o T T i
ar \7? T ow

?
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Symmetries

The is0(2, 1) algebra encoding the dynamics is linked to an invariance of S under

ISO(2,1) = SL(2,R) x R?: 5y
@ Mobius transformation on proper time
@ Abelian transformation on W,

These are NOT residual diffeomorphism: they map a solution to a different one (e.g by
changing the mass)

Mobius Abelian
A A= (d+ cm)?A, A A=A,
BH§:B’ B>—)§IB+A(CI+,8T0+'YT§),
12— 13 = (d + c70) (2cB + (d + cmo)L3) . 12 [2 = 12— (B+2y70)A,
L2(d L2 M, = 2y /7/2
s MMBH- May s oMo h (Of;l— Bro + v78) /2 .
e =
0 0
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Symmetries |
Charges

@ According to Noether's theorem we compute the conserved charges

@ We translate the time derivative V, to the momenta P;

SL(2, R) charges
Q. =H, Q =C+7H, Qr=2V—9:C -7 H
that respectively generate the translation, dilation and special conformal transformation on 7

R3 charges

P_=A, Po=D+TA, P, = —2V; — 27D — A,

that corresponds to the different coefficient of the polynomial in 7

@ These represent the initial condition of the is0(2,1) generators presented before.

@ They satisfy the same algebra

BH interior symmetry 09,/09/2021 11 /16
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BMS extension

@ In general relativity Poincaré group can be enhanced to its infinite dimensional
extension

@ Consider more general transformations:

. arth i = =T
SL@.R): | | L e ST VI R G T .
’ Vi = Vi(#) (cﬂ?)z : V2 = V(1) = Vet (et BT+
— el el AL
% = T =f(5) T =T
B o Te: | Vi = W)=V,
A e Vi Vo = Va(r)=Va+gWVi—Vig
BH interior symmetry 09,/09/2021 12 / 16
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BMS extension

4

T — 1""': f(fr)’ T — i:Tr
Dy ~ : Tg Vil s Vil =l
Vi = Vi(7) = f(1) Vi(1), Voo = Vo(r1)=Va+gVi— Vig

>

They transform the action functional as:

[ d [ f
ArS = /dT Sch[f]Vo — — (.Vz)
dr \ f

[ d g\'/2
AS=Jdr | -gP¥V+— g -2
g / T g l+dr (g 1 oV,
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BMS extension

" 4

T F=f(r), A il
Df i ~ c Tg Vl — VI(T) = Vla
CE A G gl Vo = V(1) = Va+gVi— Vig

They transform the action functional as:

AfS = /d’!‘ Sch[f]Va — i (f.-\/z)

d sz
AS= [dr | —g®vi+ —[gwyy — =L
g / T g l+dr (g 1 oV,

@ The theory is not invariant under BMS!

@ The extra terms, proportional to V; also appear when introducing a

e cosmological constant: AV}
o kinetic term of an homogeneous scalar field: > V-

@ Extended concept of symmetry: moves into a family of different theories

BH interior symmetry 09,/09/2021 12 /16

Pirsa: 21090009 Page 17/25



BMS extension

h
T — 1""': f(fr)’ T — i:Tr
D; - e e i = W(r)=Ww,
Vi = Vi(7) = f(1) Vi(1), Voo = Vo(r1)=Va+gVi— Vig

@ The transformation Adf ; := T4 o Dr has the same composition and inverse law of the

group
BMS3 = Diff(5) xaq Vect(SH)ab

@ Moreover V; transform exactly as the algebra element
Adf o (X; a) = (Ade X; Adra + [Adf X, g]) , Ade X = (fX) of 1.

The V;'s belongs to the adjoint representation of the BMS3 group:
bmss = Vect(S!) @.q Vect(S1)., 3 (Vi, Vo),

BH interior symmetry 09/09/2021 12 / 16

Pirsa: 21090009 Page 18/25



BMS extension

Hamiltonian generators

" A

@ Even if the BMS transformations are not symmetries, they have an integrable
generator

Dx=-HX—-CX+ WX,
Ta =Aa+Da+ Via.
@ These are the generalisation of the ISO(2,1) charges presented before
@ But their Poisson algebra is not a central extension of bms
{Dx, Dy} = —Dix v + (XY® — yXI) v,
{Ta,Ta} =0,
{Dx,Ta} = —Tix,a + ((:};Xm _ X(:.}:(3}) Vi,
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BMS extension

Hamiltonian generators

" 4

@ Even if the BMS transformations are not symmetries, they have an integrable
generator

Dy ==-HX - CX+VeX,
Ta=Aa+Da+ Via.

@ These are the generalisation of the ISO(2, 1) charges presented before

@ But their Poisson algebra is not a central extension of bms

Dx, Dy} = —Dix y1 + (XY® — yXOY v,
X.]
{71‘&77-5:'“:0:
Xy Jajy — — /X« + (« — 84 16
Dx, T. Tix.o] + (@X® — Xa®) v/

A The Hamiltonian do not belong to the abelian subgroup of generators

H = Dx(r)=-1

BH interior symmetry 09,/09/2021 13 /16
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Coadjoint representation | _ |

@ The coadjoint action of a group G is defined on the dual Lie algebra g*, here
represented by two forms on the (decompactified) circle:

(J,P) ebms™ (4, P)|(X,a)) = de(JX +Pa),
<Ad;g(Ju P)'(Xa Gf)) o ((Ja P)|Ad(f,g)‘1(xn Gf)) :
@ Given an element py in g* its coadjoint orbit Op, is
Op :={p=Adym|Vg € G}

@ Classification of the orbits by their little group naturally leads to irreps of the full
group

BH interior symmetry 09,/09/2021 14 /16
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BMS extension

Coadjoint representation

@ We take as covectors the equation of motion:

0S = /dT[J5V1 + P5Vso + d, 0]

e Adding a boundary term the action can be written as pairing between algebra elements
and their dual:

&= /dT(JVl + PVQ)
It has the same form of corner charges of 3D gravity

e (J, P) transform as in the centrally-extended coadjoint representation of BMS:

P ——— f2(Pof)— & Sch[f],
Ad;‘_lg

J—— s f2 (J +gP+2zP — c2g(3)) o f — c1Schlf].
Adr_y
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BMS extension

Coadjoint representation

@ We take as covectors the equation of motion:

0S = /dT[J5V1 + P5Vo + d. 0]

e Adding a boundary term the action can be written as pairing between algebra elements
and their dual:

&= /dT(JVl + PVQ)
It has the same form of corner charges of 3D gravity

e (J, P) transform as in the centrally-extended coadjoint representation of BMS:
P—— f2(Pof)— Sch[f],
Adr_y

J i f2 (J+gP+2gP—g(3)) o,
AdY_;

e The central charges are c; =0, =1 N

@ The little group of the orbit starting from J = 0, P = 0 is known to be ISO(2, 1),
the symmetry group of our theory
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Perspective

Comments

| | . | A
We have studied the symmetries of the phase space containing classical Schwarzschild

interior solutions
@ is50(2,1) encoding the dynamic of phase space
@ Lifted to a Lagrangian symmetry

@ |t descends from a BMS3 structure

o EOMs as coadjoint vectors with central extension
o Stabilizer of the orbit as symmetry group
e Action as bilinear form {g*|g)

What comes next?
@ Group quantization of ISOQ, 1)
@ We can describe mass evolution in terms of group flow
o Why BMS37?

o Role of boundaries/asymptotic symmetries
e Broken symmetry?
e Other GR systems have similar properties?
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Perspective

Comments
We have studied the symmetries of the phase space containing classical Schwarzschild
interior solutions

@ is0(2,1) encoding the dynamic of phase space

@ Lifted to a Lagrangian symmetry

@ It descends from a BMS3 structure

o EOMs as coadjoint vectors with central extension
o Stabilizer of the orbit as symmetry group
e Action as bilinear form {g*|g)

What comes next?
e Group quantization of ISO(2,1)

@ We can describe mass evolution in terms of group flow
o Why BMS37?

9, Role of boundaries/asymptotic symmetries
o Broken symmetry?
e Other GR systems have similar properties?

Thank you for your attention!
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