Title: Black Hole interior: Symmetries and regularization

Speakers: Francesco Sartini

Series: Quantum Gravity

Date: September 09, 2021 - 2:30 PM

URL: https://pirsa.org/21090009

Abstract: The spacetime in the interior of a black hole can be described by an homogeneous line element, for which the Einstein-Hilbert action reduces to a one-dimensional mechanical model. We have shown that this model exhibits a symmetry under the (2+1)-dimensional Poincare? group. The existence of this symmetry provides a powerful criterion to discriminate between different regularization and quantization schemes. It also unravels new aspects of symmetry for black holes, and opens the way towards a rigorous group quantization of the interior. Remarkably, the physical ISO(2,1) symmetry can be seen as a broken infinite-dimensional symmetry. This is done by reinterpreting the action for the model as a geometric action for the BMS3 group, where the configuration space variables are elements of the algebra bms3 and the equations of motion transform as coadjoint vectors.

Zoom Link: https://pitp.zoom.us/j/99646733321?pwd=U05kYU85V0Q4VCtrZ1BNV2JZbE1DUT09

Pirsa: 21090009 Page 1/25

Black Hole interior: Symmetries and regularization

Francesco Sartini

based on

Geiller, Livine, Sartini: arXiv:gr-qc/2010.07059 arXiv:gr-qc/2107.03878

September 9th 2021

F. Sartini BH interior symmetry

Pirsa: 21090009

Motivations

Symmetries: Gauge vs Physical

- Play a central role in quantum theories
- GR rests solely on gauge symmetries, diffeomorphisms
- Symmetries interplay with boundary conditions, gauge can become physical
- Understand classical and quantum symmetry-reduced models in GR
 - Lots of things known about FLRW cosmologies [Ashtekar, Bojowald, Pawlowski, Singh, ...]
 - Recent work on BH interior [Ashtekar, Bodendorfer, Bojowald, Campiglia, Corichi, Gambini, Mele, Modesto, Munch, Olmedo, Pullin, Singh, ...]
 - Recent work on $SL(2,\mathbb{R})$ symmetry in FLRW [Ben Achour, Livine]
 - We want to extend this to the BH interior

F. Sarti

BH interior symmetry

09/09/2021

2 / 16

Pirsa: 21090009 Page 3/25

Roadmap

- Start from minisuperspace BH interior
- Reveal iso(2,1) symmetry on phase space
- Relate this symmetry to a "hidden" symmetry of the action
- ullet Embed the Poincaré group into ${
 m BMS_3}$
- Reinterpret the previous results in terms of BMS₃ representations
- Opens many doors (quantization, generalization, inhomogeneous case, relation to boundary symmetries, mass evolution,...)

◆ロト ◆御 ト ◆注 ト ◆注 ト 注 目 * りへ()

artini BH interior symmetry

Pirsa: 21090009 Page 4/25

Classical Theory

Schwarzschild BH interior

Radial coordinate becomes time-like.

$$\mathrm{d}s^2 = -\left(rac{2M}{T}-1
ight)^{-1}\mathrm{d}T^2 + \left(rac{2M}{T}-1
ight)\mathrm{d}r^2 + T^2\mathrm{d}\Omega^2\,,$$

• Described by Kantowski-Sachs cosmology:

$$\mathrm{d}s^2 = -N^2 \mathrm{d}t^2 + \frac{8V_2}{V_1} \mathrm{d}x^2 + V_1 \mathrm{d}\Omega^2,$$

Z

• homogeneous as in LQC minisuperspace

Spatial integration cutoff: $x \in [0, L_0]$

 Einstein-Hilbert action reduces to a 1D mechanical model, invariant under time reparametrization

F. Sartin

BH interior symmetry

09/09/2021

Lapse and cutoff

Regulator or energy level?

$$N := L_0 N_p \sqrt{rac{V_1}{2V_2}} \,, \qquad \qquad \mathrm{d} s^2 = -L_0^2 N_p^2 rac{V_1}{2V_2} \mathrm{d} t^2 + rac{8V_2}{V_1} \mathrm{d} x^2 + V_1 \mathrm{d} \Omega^2 \,,$$

$$\mathcal{S}_{\mathrm{EH}}^{(t)}[N_{p},V_{i}] = \int \mathrm{d}t \, \left[\frac{N_{p} L_{0}^{2}}{2N_{p} V_{1}^{2}} + \frac{\mathrm{d}}{2N_{p} V_{1}^{2}} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2N_{p} V_{1}} (V_{1} V_{2})' \right) \right],$$

we introduce the proper time gauge ($d\tau = N_p dt$) and drop the boundary term,

$$\mathcal{S}^{(au)}[V_i] = \int \mathrm{d} au \, \left[L_0^2 + rac{\dot{V}_1 (V_2 \dot{V}_1 - 2 V_1 \dot{V}_2)}{2 V_1^2}
ight] \, .$$

F. Sartini

BH interior symmetry

09/09/2021

Lapse and cutoff

Regulator or energy level?

$$\label{eq:N_p_sigma} N := L_0 N_p \sqrt{\frac{V_1}{2 \, V_2}} \,, \qquad \qquad \mathrm{d} s^2 = - \frac{L_0^2}{2 \, V_2} \mathrm{d} \tau^2 + \frac{8 \, V_2}{V_1} \mathrm{d} x^2 + V_1 \mathrm{d} \Omega^2 \,,$$

$$\mathcal{S}_{\mathrm{EH}}^{(t)}[\textit{N}_{p},\textit{V}_{i}] = \int \mathrm{d}t \; \left[\textit{N}_{p} \textit{L}_{0}^{2} + \frac{\textit{V}_{1}^{\prime}(\textit{V}_{2}\textit{V}_{1}^{\prime} - 2\textit{V}_{1}\textit{V}_{2}^{\prime})}{2\textit{N}_{p}\textit{V}_{1}^{2}} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2\textit{N}_{p}\textit{V}_{1}} (\textit{V}_{1}\textit{V}_{2})^{\prime} \right) \right] \, , \label{eq:energy_energy}$$

we introduce the *proper time* gauge $(d\tau = N_p dt)$ and drop the boundary term,

$$\mathcal{S}^{(au)}[V_i] = \int \mathrm{d} au \, \left[\cancel{V_0} + rac{\dot{V}_1 (V_2 \dot{V}_1 - 2 V_1 \dot{V}_2)}{2 V_1^2}
ight] \, .$$

How can the IR scale disappear? The scalar constraint imposed by the lapse translates into the fact that the Hamiltonian for τ (H) is L_0^2

$$rac{\delta \mathcal{S}_{\mathsf{EH}}^{(t)}}{\delta N_{\mathsf{p}}} = 0$$
 \Leftrightarrow $H = L_0^2$.

We need to remember this while inserting the solution into the metric

F. Sartini

BH interior symmetry

09/09/2021

Hamiltonian setup

Equation of motion for the lapse

$$rac{\delta \mathcal{S}_{\mathsf{EH}}^{(t)}}{\delta N_{\mathsf{p}}} = 0 \qquad \Leftrightarrow \qquad L_0^2 = rac{1}{N_{\mathsf{p}}^2} \left[rac{V_2 V_1'^2}{2 V_1^2} - rac{V_1' V_2'}{V_1}
ight] \, .$$

• We perform a Legendre transform of $\mathcal{S}^{(\tau)}$:

$$\mathcal{S}^{(\tau)} = \int d\tau \left(P_i \dot{V}_i - H \right),$$
 $\begin{vmatrix} P_1 & = & \frac{V_2 \dot{V}_1 - V_1 \dot{V}_2}{V_1^2} \\ P_2 & = & -\frac{\dot{V}_1}{V_1} \end{vmatrix}$

$$H = -P_2 \left(V_1 P_1 - \frac{1}{2} V_2 P_2 \right) = \frac{V_2 \dot{V}_1^2}{2 V_1^2} - \frac{\dot{V}_1 \dot{V}_2}{V_1} \approx L_0^2.$$

- ullet 4-dimensional phase space with the Poisson brackets $\{V_i,P_j\}=\delta_{ij}$
- Time evolution: $\dot{\mathcal{O}}:=\mathrm{d}_{ au}\mathcal{O}=\{\mathcal{O},\mathcal{H}\}+\partial_{ au}\mathcal{O}$

F. Sartini

BH interior symmetry

09/09/2021

Classical solution

Solutions

$$egin{align} V_1 &= rac{A}{2}(au - au_0)^2 \,, \ P_1 &= rac{2B}{A(au - au_0)^2} \,, \ V_2 &= B(au - au_0) - rac{L_0^2}{2}(au - au_0)^2 \,, \ P_2 &= -rac{2}{ au - au_0} \,. \ \end{array}$$

Inserting these solutions in the metric, and changing the variables as:

$$au - au_0 = \sqrt{rac{2}{A}} \ T \, , \qquad \qquad x = rac{1}{2L_0} \sqrt{rac{A}{2}} \ r \, ,$$

we recover the standard Schwarzschild BH interior metric with mass:

$$M = \frac{B\sqrt{A}}{\sqrt{2}L_0^2} \,.$$

First Integrals

$$A = \frac{V_1 P_2^2}{2}$$
, $B = V_1 P_1$.

 B/L_0 is the Komar charge associated to the Killing vector ∂_x .

F. Sartini

BH interior symmetry

09/09/2021

iso(2,1) algebra

- Check if and at which stage the Poisson brackets of V_i and its derivative form a closed algebra:
- V_2 : $\mathfrak{sl}(2,\mathbb{R})$:

$$\dot{V}_2 = \{V_2, H\} = -V_1 P_1 - V_2 P_2 := C$$
 $\dot{C} = \{C, H\} = H.$

C is the generator of isotropic dilations of the phase space:

$$e^{\{\eta \ C,\cdot\}} \triangleright P_i = e^{-\eta} P_i \,, \qquad \qquad e^{\{\eta \ C,\cdot\}} \triangleright V_i = e^{\eta} V_i \,, \qquad \qquad \forall \ i \in \{1,2\} \,.$$

The brackets are:

$$\{C, V_2\} = V_2, \qquad \{V_2, H\} = C, \qquad \{C, H\} = -H.$$

The Casimir is:

$$C_{\mathfrak{sl}(2,\mathbb{R})} = -C^2 - 2HV_2 = -B^2 < 0.$$

F. Sartir

BH interior symmetry

09/09/2021

iso(2,1) algebra

- Check if and at which stage the Poisson brackets of V_i and its derivative form a closed algebra:
- V_2 : $\mathfrak{sl}(2,\mathbb{R})$ CVH
- V_1 : extends to $\mathfrak{iso}(2,1)$

$$\dot{V}_1 = \{V_1, H\} = -V_1 P_2 := -D$$
 $\dot{D} = \{D, H\} := A.$

$$j_z = \frac{1}{\sqrt{2}}(V_2 - H), \qquad k_x = \frac{1}{\sqrt{2}}(V_2 + H), \qquad k_y = C,$$

$$\Pi_x = D, \qquad \Pi_y = \frac{1}{\sqrt{2}}(V_1 - A), \qquad \Pi_0 = \frac{1}{\sqrt{2}}(V_1 + A),$$

that correspond to the generators of (2+1) Poincaré group. The two Casimirs are given by

$$\mathcal{C}_1 = \Pi_0^2 - \Pi_x^2 - \Pi_y^2 \approx 0 \,, \qquad \qquad \mathcal{C}_2 = j_z \Pi_0 + k_y \Pi_x - \Pi_y k_x \approx 0 \,.$$

- The Casimir conditions reduce the 6-dimensional Lie algebra back to the original four dimensional phase space
- The Black hole interior carries massless representation of (2+1) Poincaré group

Symmetries

The $\mathfrak{iso}(2,1)$ algebra encoding the dynamics is linked to an invariance of S under $\mathrm{ISO}(2,1)=\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^3$:

• Möbius transformation on proper time

$$au \mapsto ilde{ au} = rac{a au + b}{c au + d} \qquad ext{with} \qquad ad - bc = 1 \,, \ V_i \mapsto \widetilde{V}_i(ilde{ au}) = rac{V_i(au)}{(c au + d)^2} \,.$$

• Abelian transformation on V_2

$$au \mapsto ilde{ au} = au \,,$$

$$V_1 \mapsto \widetilde{V}_1(au) = V_1 \,,$$

$$V_2 \mapsto \widetilde{V}_2(au) = V_2 + (\alpha + \beta \tau + \gamma \tau^2) \dot{V}_1 - (\beta + 2\gamma \tau) V_1 \,,$$

The induced variation of the action yields a total derivative as

$$\Delta \mathcal{S} = \int \mathrm{d} au \left[rac{\mathrm{d}}{\mathrm{d} au} \left(2 \gamma V_1 - (lpha + eta au + \gamma au^2) rac{\dot{V}_1^2}{2 V_1}
ight)
ight],$$

F. Sartin

BH interior symmetry

09/09/2021

Symmetries

The $\mathfrak{iso}(2,1)$ algebra encoding the dynamics is linked to an invariance of \mathcal{S} under $\mathrm{ISO}(2,1)=\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^3$:

- Möbius transformation on proper time
- Abelian transformation on V_2

These are NOT residual diffeomorphism: they map a solution to a different one (e.g by changing the mass)

Möbius

$$A\mapsto \widetilde{A}=(d+c au_0)^2A\,,$$
 $B\mapsto \widetilde{B}=B\,,$ $L_0^2\mapsto \widetilde{L}_0^2=(d+c au_0)\left(2cB+(d+c au_0)L_0^2
ight)\,.$

$$M_{
m BH} \, \mapsto \, rac{L_0^2(d+c au_0)}{\widetilde{L}_0^2} M_{
m BH} \, .$$

Abelian

$$A \mapsto \widetilde{A} = A$$
,
 $B \mapsto \widetilde{B} = B + A(\alpha + \beta \tau_0 + \gamma \tau_0^2)$,
 $L_0^2 \mapsto \widetilde{L}_0^2 = L_0^2 - (\beta + 2\gamma \tau_0)A$,

$$M_{\rm BH} \mapsto \frac{L_0^2 M_{\rm BH} + A^{3/2} (\alpha + \beta \tau_0 + \gamma \tau_0^2)/\sqrt{2}}{\widetilde{L}_0^2}$$
.

F. Sartini

BH interior symmetry

, ,

Symmetries

Charges

- According to Noether's theorem we compute the conserved charges
- We translate the time derivative \dot{V}_i to the momenta P_i

$\mathrm{SL}(2,\mathbb{R})$ charges

$$Q_{-}=H$$

$$Q_0 = C + \tau H$$

$$Q_{-} = H$$
, $Q_{0} = C + \tau H$, $Q_{+} = 2V_{2} - 2\tau C - \tau^{2} H$.

that respectively generate the translation, dilation and special conformal transformation on au

\mathbb{R}^3 charges

$$P_{-}=A$$

$$P_0 = D + \tau A$$

$$P_{-} = A$$
, $P_{0} = D + \tau A$, $P_{+} = -2V_{1} - 2\tau D - \tau^{2} A$,

that corresponds to the different coefficient of the polynomial in au

- These represent the initial condition of the iso(2,1) generators presented before.
- They satisfy the same algebra

BH interior symmetry

- In general relativity Poincaré group can be enhanced to its infinite dimensional extension
- Consider more general transformations:

$$\mathrm{SL}(2,\mathbb{R}): \left| \begin{array}{cccc} \tau & \mapsto & \tilde{\tau} = \frac{a\tau+b}{c\tau+d} \,, \\ V_i & \mapsto & \widetilde{V}_i(\tilde{\tau}) = \frac{V_i(\tau)}{(c\tau+d)^2} \,, \end{array} \right| \left| \begin{array}{cccc} \tau & \mapsto & \tilde{\tau} = \tau \,, \\ V_1 & \mapsto & \widetilde{V}_1(\tau) = V_1 \,, \\ V_2 & \mapsto & \widetilde{V}_2(\tau) = V_2 + (\alpha + \beta\tau + \gamma\tau^2) \dot{V}_1 \\ & & - (\beta + 2\gamma\tau) V_1 \,. \end{array} \right|$$

F. Sartini

BH interior symmetry

09/09/2021

$$D_f: \left| egin{array}{cccc} au & \mapsto & ilde{ au} = f(au) \,, \ V_i & \mapsto & \widetilde{V}_i(ilde{ au}) = \dot{f}(au) \, V_i(au) \,, \end{array}
ight. \left| egin{array}{cccc} au & \mapsto & ilde{ au} = au \,, \ V_1 & \mapsto & \widetilde{V}_1(au) = V_1 \,, \ V_2 & \mapsto & \widetilde{V}_2(au) = V_2 + g \, \dot{V}_1 - V_1 \dot{g} \,. \end{array}
ight.$$

They transform the action functional as:

$$\Delta_f \mathcal{S} = \int d\tau \left[\frac{\operatorname{Sch}[f] V_2}{\operatorname{d} \tau} - \frac{\mathrm{d}}{\mathrm{d} \tau} \left(\frac{\ddot{f}}{\dot{f}} V_2 \right) \right],$$

$$\Delta_g \mathcal{S} = \int d\tau \left[- \frac{g^{(3)} V_1}{\operatorname{d} \tau} + \frac{\mathrm{d}}{\mathrm{d} \tau} \left(\ddot{g} V_1 - \frac{g \dot{V}_1^2}{2 V_1} \right) \right].$$

F. Sartini

BH interior symmetry

09/09/2021

$$D_f: \left| egin{array}{cccc} au & \mapsto & ilde{ au} = f(au) \,, \ V_i & \mapsto & \widetilde{V}_i(ilde{ au}) = \dot{f}(au) \, V_i(au) \,, \end{array}
ight. \left| egin{array}{cccc} au & \mapsto & ilde{ au} = au \,, \ V_1 & \mapsto & \widetilde{V}_1(au) = V_1 \,, \ V_2 & \mapsto & \widetilde{V}_2(au) = V_2 + g \, \dot{V}_1 - V_1 \dot{g} \,. \end{array}
ight.$$

They transform the action functional as:

$$\Delta_f \mathcal{S} = \int d\tau \left[\frac{\text{Sch}[f] V_2}{\text{d}\tau} - \frac{d}{d\tau} \left(\frac{\ddot{f}}{\dot{f}} V_2 \right) \right],$$

$$\Delta_g \mathcal{S} = \int d\tau \left[-\frac{g^{(3)} V_1}{d\tau} + \frac{d}{d\tau} \left(\ddot{g} V_1 - \frac{g \dot{V}_1^2}{2 V_1} \right) \right].$$

- The theory is not invariant under BMS!
- The extra terms, proportional to V_i also appear when introducing a
 - cosmological constant: ΛV₁
 - kinetic term of an homogeneous scalar field: $\dot{\phi}^2 V_2$
- Extended concept of symmetry: moves into a family of different theories

F. Sartini

BH interior symmetry

09/09/2021

r

ullet The transformation $\mathrm{Ad}_{f,g}:=T_g\circ D_f$ has the same composition and inverse law of the group

$$\mathrm{BMS}_3 = \mathrm{Diff}(S^1) \ltimes_{\mathrm{Ad}} \mathrm{Vect}(S^1)_{\mathrm{ab}}$$

• Moreover V_i transform exactly as the algebra element

$$\mathrm{Ad}_{f,g}(X;\alpha)=\left(\mathrm{Ad}_{f}X;\mathrm{Ad}_{f}\alpha+\left[\mathrm{Ad}_{f}X,g\right]\right),\qquad \mathrm{Ad}_{f}X=\left(\dot{f}X\right)\circ f^{-1}.$$

The V_i 's belongs to the adjoint representation of the BMS₃ group:

$$\mathfrak{bms}_3 = \operatorname{Vect}(S^1) \oplus_{\mathsf{ad}} \operatorname{Vect}(S^1)_{\mathsf{ab}} \ni (V_1, V_2),$$

F. Sartini

BH interior symmetry

09/09/2021

Hamiltonian generators

 \bullet Even if the BMS transformations are not symmetries, they have an integrable generator

$$\mathcal{D}_X = -HX - C\dot{X} + V_2\ddot{X},$$

 $\mathcal{T}_\alpha = A\alpha + D\dot{\alpha} + V_1\ddot{\alpha}.$

- These are the generalisation of the ISO(2,1) charges presented before
- But their Poisson algebra is not a central extension of bms

$$\begin{split} \left\{ \mathcal{D}_{X}, \mathcal{D}_{Y} \right\} &= -\mathcal{D}_{\left[X,Y\right]} + \left(XY^{(3)} - YX^{(3)} \right) V_{2} \,, \\ \left\{ \mathcal{T}_{\alpha}, \mathcal{T}_{\beta} \right\} &= 0 \,, \\ \left\{ \mathcal{D}_{X}, \mathcal{T}_{\alpha} \right\} &= -\mathcal{T}_{\left[X,\alpha\right]} + \left(\alpha X^{(3)} - X\alpha^{(3)} \right) V_{1} \,, \end{split}$$

Hamiltonian generators

• Even if the BMS transformations are not symmetries, they have an integrable generator

$$\mathcal{D}_X = -HX - C\dot{X} + V_2\ddot{X},$$

$$\mathcal{T}_\alpha = A\alpha + D\dot{\alpha} + V_1\ddot{\alpha}.$$

- These are the generalisation of the ISO(2,1) charges presented before
- But their Poisson algebra is not a central extension of bms

$$egin{aligned} \left\{ \mathcal{D}_{X},\mathcal{D}_{Y}
ight\} &= -\mathcal{D}_{\left[X,Y
ight]} + \left(XY^{(3)} - YX^{(3)}\right)V_{2}\,, \ \left\{ \mathcal{T}_{\alpha},\mathcal{T}_{\beta}
ight\}_{lackbox{\scriptsize k}} &= 0\,, \ \left\{ \mathcal{D}_{X},\mathcal{T}_{\alpha}
ight\} &= -\mathcal{T}_{\left[X,\alpha
ight]} + \left(\alpha X^{(3)} - X\alpha^{(3)}\right)V_{1}\,, \end{aligned}$$

The Hamiltonian do not belong to the abelian subgroup of generators

$$H = \mathcal{D}_{X(\tau)=-1}$$

BH interior symmetry

Coadjoint representation

• The coadjoint action of a group G is defined on the dual Lie algebra \mathfrak{g}^* , here represented by *two forms* on the (decompactified) circle:

$$(J,P) \in \mathfrak{bms}^* \qquad \langle (J,P)|(X,\alpha)\rangle = \int d\tau (JX + P\alpha) ,$$

 $\langle \mathrm{Ad}_{f,g}^*(J,P)|(X,\alpha)\rangle := \langle (J,P)|\mathrm{Ad}_{(f,g)^{-1}}(X,\alpha)\rangle .$

• Given an element p_0 in \mathfrak{g}^* its coadjoint orbit \mathcal{O}_{p_0} is

$$\mathcal{O}_{p_0} := \left\{ p = \operatorname{Ad}_g^* p_0 | \forall g \in G \right\}$$

 Classification of the orbits by their little group naturally leads to irreps of the full group

F. Sartir

BH interior symmetry

09/09/2021

Coadjoint representation

• We take as covectors the equation of motion:

$$\delta \mathcal{S} = \int \mathrm{d} au [J \delta V_1 + P \delta V_2 + \mathrm{d}_ au heta]$$

• Adding a boundary term the action can be written as pairing between algebra elements and their dual:

$$\mathcal{S} = \int \mathrm{d} au (JV_1 + PV_2)$$

It has the same form of corner charges of 3D gravity

• (J, P) transform as in the centrally-extended coadjoint representation of BMS:

$$P \xrightarrow{\operatorname{Ad}_{f^{-1},g}^*} \dot{f}^2(P \circ f) - c_2 \operatorname{Sch}[f],$$

$$J \xrightarrow[\mathrm{Ad}_{f^{-1},g}]{} \dot{f}^{2} \left(J + g \dot{P} + 2 \dot{g} P - c_{2} g^{(3)} \right) \circ f - c_{1} \mathrm{Sch}[f].$$

Coadjoint representation

• We take as covectors the equation of motion:

$$\delta \mathcal{S} = \int \mathrm{d} au [J \delta V_1 + P \delta V_2 + \mathrm{d}_{ au} heta]$$

 Adding a boundary term the action can be written as pairing between algebra elements and their dual:

$$\mathcal{S} = \int \mathrm{d} au (JV_1 + PV_2)$$

It has the same form of corner charges of 3D gravity

• (J, P) transform as in the centrally-extended coadjoint representation of BMS:

$$P \xrightarrow{\operatorname{Ad}_{f^{-1},g}^*} \dot{f}^2(P \circ f) - \operatorname{Sch}[f],$$

$$J \xrightarrow{\operatorname{Ad}_{f^{-1},g}^*} \dot{f}^2 \left(J + g \dot{P} + 2 \dot{g} P - g^{(3)} \right) \circ f.$$

- ullet The central charges are $c_1=0, c_2=1$
- The little group of the orbit starting from J=0, P=0 is known to be ISO(2, 1), the symmetry group of our theory

F. Sartini

Perspective

Comments

We have studied the symmetries of the phase space containing classical Schwarzschild interior solutions

- iso(2,1) encoding the dynamic of phase space
- Lifted to a Lagrangian symmetry
- ullet It descends from a ${
 m BMS_3}$ structure
 - EOMs as coadjoint vectors with central extension
 - Stabilizer of the orbit as symmetry group
 - Action as bilinear form $\langle \mathfrak{g}^* | \mathfrak{g} \rangle$

What comes next?

- Group quantization of ISO(2,1)
- We can describe mass evolution in terms of group flow
- Why BMS_3 ?
 - Role of boundaries/asymptotic symmetries
 - Broken symmetry?
 - Other GR systems have similar properties?

F. Sartir

BH interior symmetry

09/09/2021

16 / 10

Pirsa: 21090009 Page 24/25

Perspective

Comments

We have studied the symmetries of the phase space containing classical Schwarzschild interior solutions

- iso(2,1) encoding the dynamic of phase space
- Lifted to a Lagrangian symmetry
- It descends from a BMS₃ structure
 - EOMs as coadjoint vectors with central extension
 - Stabilizer of the orbit as symmetry group
 - Action as bilinear form $\langle \mathfrak{g}^* | \mathfrak{g} \rangle$

What comes next?

- Group quantization of ISO(2,1)
- We can describe mass evolution in terms of group flow
- Why BMS_3 ?
 - Role of boundaries/asymptotic symmetries
 - Broken symmetry?
 - Other GR systems have similar properties?

Thank you for your attention!

◆ロ > ◆母 > ◆豆 > ◆豆 > 豆目 * 少へ()

Pirsa: 21090009

-. Sartini

BH interior symmetry

00 /00 /2021