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Early quantum computing

Classical computers. Quantum computers as Quantum algorithms for
quantum simulators. factoring and discrete log.

Quantum error correction.
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Evidence for qguantum advantage in computat\‘

Quantum algorithms with speedups over classical _d|yY)
Shor’s algorithm ih——=H[Y)
Simulation of Hamiltonian dynamics

Sampling from classically hard distributions
Boson sampling

|IQP circuits

Random quantum circuits

Provable speedups relative to an oracle
Bernstein-Vazirani

Simon’s problem |x) (—1)/® |x)
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n
# of qubits

d : circuit depth

Expected number of errors scales with the total circuit size ~nd
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Error correction and fault-tolerance

Quantum information can be protected using error correcting codes.

A logical qubit is composed
of multiple physical qubits

Image source: [Gambetta, Chow, Steffen 2017]
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Error correction and fault-tolerance

Quantum information can be protected using error correcting codes.

A logical qubit is composed
of multiple physical qubits

Using quantum error correction it is possible to compute fault-tolerantly.
The overhead is impractical for now.

Image source: [Gambetta, Chow, Steffen 2017]
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Quantum computers today

Current quantum computers do not incorporate error correction and are affected by
noise.

IBM Quantum
https://quantum-computing.ibm.com/services?services=systems&system=ibmq_montreal
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Quantum computers today

Current quantum computers do not incorporate error correction and are affected by
noise.

lonQ
https://iong.com/technology

Performance Benchmarks?

Qubits Average Fidelity Best Fidelity

Single-qubit gates on Single-qubit gates Single-qubit gates

79 Qubits >99% >99.97%

Two-qubit gates on all pairs up to Two-qubit gates Two-qubit gates

11 Qubits >908%" >99.3%"

7

Credit: lonQ

Minimum Fidelity Coming Soon: 32 Qubits
Single-qubit gates

o We are currently gathering detailed data
>99 /0 on our latest system, which features a

Two-qubit gates capacity of 32 fully-connected qubits

* d world-leading algorithmic
> 9 () an g alg
6 /0

performance.
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Quantum computers today B

Current quantum computers do not incorporate error correction and are affected by
noise.

Google
“Quantum supremacy using a programmable superconducting processor”
a

Arute et al, Nature 574.7779 (2019): 505-510
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Fig.1| The Sycamore processor. a, Layout of processor, showing a rectangular x x x x
array of 54 qubits (grey), each connected to its four nearest neighbours with x Qubit ‘ Adjustable coupler
couplers (blue). The inoperable qubitis outlined. b, Photograph of the

Sycamore chip.
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What can we do with limited or no error correction, using short depth circuits
over a gate set determined by architecture?
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Practical near-term quantum computing?

Most demonstrations that have been
performed on real-world quantum devices,
for “practical sounding problems” are based
on heuristic or variational quantum
algorithms.
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Practical near-term quantum computing?

Most demonstrations that have been Quantum chemistry

performed on real-world quantum devices, C  Angular profile
for “practical sounding problems” are based A - HF
on heuristic or variational quantum 7sef \! —Fa
algorithms. . . ot
10' o 1'1”3
i sim
9 k=6

107
40 60 80 100 120 140 160 180
6 (deq)
Ground state energy of water molecule

From Eddins et al. (IBM group) arXiv:2104.10220
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Practical near-term quantum computing?

Most demonstrations that have been
performed on real-world quantum devices,
for “practical sounding problems” are based
on heuristic or variational quantum
algorithms.
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Machine learning

Binary classification using quantum Kernel methods
From Havlicek et al. (IBM group)
Nature 567, 209-212 (2019).
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Practical near-term quantum computing?

Most demonstrations that have been
performed on real-world quantum devices,

for “practical sounding problems” are based
on heuristic or variational quantum
algorithms.

For now these are proof of principle
demonstrations. Even if the demonstrations
can be scaled up, we don’t know if there are
quantum speedups for these problems.

Pirsa: 21090000

Optimization
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‘<= -0-Noiseless —O— Experiment w

—— Hardware Grid
—— SK Model
—— MaxCut

3 6 9 12 15 18 21 23
# Qubits

Quantum Approximate Optimization Algorithm
From Harrigan et al. (Google group)
Nature Physics 17, 332-336 (2021).
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Other experiments have aimed only to convincingly beat classical computers,
not to perform a useful task...
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Beyond classical?

Random Circuit Sampling: simulating a random quantum circuit using a classical

computer is believed to be computationally hard...
[Boixo et al. 2017]
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‘Quantum supremacy using a programmable superconducting

Beyo n d CI aSS I Ca I ? IArute et al, Nature 574.7779 (2019): 505-510

Random
% 10 Quantum Output bits are
53 qubits 10) o Z = Z1Z) ...Zn correlated with C.
. circuit
|0}
v

Depth 20
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. “Quantum supremacy using a programmable superconducting
Beyo n d CI aSS I Ca I ? Arute et al, Nature 574.7779 (2019): 505-510

Random
Quantum
circuit

Output bits are

Z = Z1Z3 ...Zpn correlated with C.
Correlation is still
detectable even with
noise in experiment

53 qubits

Depth 20

Theoretical evidence for classical hardness: rests on a conjecture that a certain

family of complex temperature Ising model partition functions are hard to approximate in
the average case.
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u “Quantum supremacy using a programmable superconducting
Beyo n d CI aSS I Ca I ? Arute et al, Nature 574.7779 (2019): 505-510

A Random :
|0) Quantum A Output bits are
53 qubits 10) ireuit R Z = Z1Z) ...Zn correlated with C.
. Sl Correlation is still
X detectable even with
|0}
' A

noise in experiment

Depth 20

Empirical evidence for classical hardness: The best classical algorithm running on
current classical computers takes much longer than the quantum experiment.
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‘Quantum supremacy using a programmable superconducting

Beyo n d CI aSS I Ca I ? IArute et al, Nature 574.7779 (2019): 505-510

A Random :
|0) Quantum A Output bits are
53 qubits 10) ireuit R Z = Z1Z) ...Zn correlated with C.
. e SleLL . Correlation is still
10) R de"cect_able evgn with
v noise in experiment

Depth 20

Empirical evidence for classical hardness: The best classical algorithm running on
current classical computers takes much longer than the quantum experiment.

This is a moving target!
Recent classical progress: classical algorithm spoofs Google’s correlation measure, using 5 days and 60 GPUs [Pan
Zhang 2021]
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Beyond classical?

53 qubits |0)

Empirical evidence for classical hardness: The best classical algorithm running on

Random

‘Quantum supremacy using a programmable superconducting
Arute et al, Nature 574.7779 (2019): 505-510

Quantum
circuit

Depth 20

Output bits are

Z = Z1Z3 ...Zpn correlated with C.
Correlation is still
detectable even with
noise in experiment

current classical computers takes much longer than the quantum experiment.

This is a moving target!
Recent quantum progress:

Pirsa: 21090000

“Quantum computational advantage via 60-qubit 24-cycle Random Circuit Sampling”

Zhu et al, arXiv:2109.03494
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Beyond classical?

BosonSampling: systems of non-interacting bosons can also be used to sample from
classically inaccessible distributions, assuming similar complexity theoretic conjectures.
[Aaronson Arkhipov 2011]

Experiment at USTC implemented a
variant called Gaussian Boson
Sampling using a 100 mode linear
optical network. Classical simulability
is subject of debate.

“Quantum computational advantage using photons”
Zhong et al, Science 370.6523 (2020): 1460-1463
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THE RORDER TERRITORY
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Image source: Zurek W.H. (2006) “Decoherence and the Transition from Quantum to Classical — Revisited”
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THE RORPER TERRITORY
QANTUM TOMAIN CLASSICAL DOMAIN

ORDO-J |
Wi our P
RMPLIFIEE

¥ | M~ P—
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Image source: Zurek W.H. (2006) “Decoherence and the Transition from Quantum to Classical — Revisited”
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THE RORPER TERRITORY
GUNNTUM DOM AN CLASSICAL DoMAIN

CLASSACAL LA MND ORDE 12
DO NOT INTERFE 2 WL

NEWTON'S EQUATIONS
MWD LA OF TMER ML DYNMUIC S

QUANTUM PiLL OF RIGHTS

INTERFERE (F Yoo CANIL
SCHRIDINGER'S. EQUATION *

>N

: e

Which restricted forms of quantum computation can be more powerful
than classical computers? Which are classically simulable?

Image source: Zurek W.H. (2006) “Decoherence and the Transition from Quantum to Classical — Revisited”
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THE RORPER TERRITORY
GUANTUM DOMALIN CLASSICAL DOMAIN

CLASSACAL LAL) AND OrDE 12

INTERFERE IF Yoo CANIII ’,\ DO NOT INTERFE 2 1L
P e & y ey NE L . ~F
SHRDIGERS EQUITI 0N ) a SIS o

-~ \ R‘:‘)b;

In this talk | will tell you about a new kind of quantum advantage with
shallow quantum circuits.

Image source: Zurek W.H. (2006) “Decoherence and the Transition from Quantum to Classical — Revisited”
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Shallow quantum circuits

Circuit depth is the number of time steps allowing for parallel gates.
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Shallow quantum circuits

Circuit depth is the number of time steps allowing for parallel gates.

Time step 1
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Shallow quantum circuits

Circuit depth is the number of time steps allowing for parallel gates.

Time step 2
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Shallow quantum circuits

Circuit depth is the number of time steps allowing for parallel gates.

Time step 3
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Shallow quantum circuits

Circuit depth is the number of time steps allowing for parallel gates.

We are interested in quantum circuits with constant depth.
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Can shallow quantum circuits beat classical computers? = —‘
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Big question: Can constant-depth quantum circuits perform a task that

polynomial time classical computers can’'t? We believe they can...

[Terhal Divincenzo 2002][Gao et al 17]
[Bermejo-Vega et al. 17]

Smaller question: Can constant-depth quantum circuits solve a
problem that constant-depth classical circuits can’t?
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Can shallow quantum circuits beat classical computers?

Big question: Can constant-depth quantum circuits perform a task that

polynomial time classical computers can’'t? We believe they can...

[Terhal Divincenzo 2002][Gao et al 17]
[Bermejo-Vega et al. 17]

Smaller question: Can constant-depth quantum circuits solve a
problem that constant-depth classical circuits can’'t? YES...
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Shallow quantum beats shallow classical

Plan for the rest of the talk:

Bravyi, DG, Koenig. Science 362 (6412), 2018.

Shallow quantum circuits can solve a linear algebra problem that provably can’t
be solved by shallow classical circuits.

Bravyi, DG, Koenig, Tomamichel. Nature Physics 1-6, 2020.

Noisy shallow quantum circuits can solve a linear algebra problem that
provably can’t be solved by shallow classical circuits.
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Shallow quantum beats shallow classical

Plan for the rest of the talk:

Bravyi, DG, Koenig. Science 362 (6412), 2018.

Shallow quantum circuits can solve a linear algebra problem that provably can’t
be solved by shallow classical circuits.

Bravyi, DG, Koenig, Tomamichel. Nature Physics 1-6, 2020.

Noisy shallow quantum circuits can solve a linear algebra problem that
provably can’t be solved by shallow classical circuits.

The advantage is not very dramatic: log versus constant depth.

That said, it provides a new kind of unconditional evidence that quantum computers
are more powerful than classical ones...

Pirsa: 21090000 Page 37/100



Evidence for qguantum advantage in computatm\‘

Quantum algorithms with speedups over classical ~  dJy)
Shor’s algorithm lhf = H|Y)
Simulation of Hamiltonian dynamics

Sampling from classically hard distributions

Boson sampling I8§ p(z)
IQP circuits Ié) . :

Random quantum circuits

Provable speedups relative to an oracle Black
Bernstein-Vazirani |x) ot.::;e (—1)7®|x)
Simon’s problem

Quantum advantage with shallow circuits A mcdest, but provable and non-oracular
This talk quantum speedup attained by constant-
[This talk] depth quantum circuits in a 2D architecture.
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Evidence for qguantum advantage in computatm\‘

Quantum algorithms These speedups disappear if the

Shor’s algorithm classical algorithms can be improved Hly)
Simulation of Hamilto

Sampling fro
Boson samp Assumes complexity-theoretic and
IQP circuits other conjectures.

= p(2)

Random quantumnt circurs

Provable speedups

Bernstein-Vazirani Oracles do not exist in the real world. (_1)f(x) |x>
Simon’s problem

Quantum advantage with shallow circuits A mcdest, but provable and non-oracular
[This talk] quantum speedup attained by constant-

depth quantum circuits in a 2D architecture.

Pirsa: 21090000 Page 39/100



Shallow quantum beats shallow classical
Bravyi, DG, Koenig. Science 362 (6412), 2018.
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The Hidden Linear Function problem

We will define the problem in two equivalent ways

Simulate measurements
on a quantum graph state

Compute a certain property
of a quadratic form

{q(x) = x"Ax mod 4 }
q: {Orl}N — Ly

Pirsa: 21090000
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The Hidden Linear Function problem k\‘

An instance of the problem is defined by a symmetric n X n binary matrix A

The off-diagonal part of A defines a graph
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The Hidden Linear Function problem k\‘

An instance of the problem is defined by a symmetric n X n binary matrix A

The off-diagonal part of A defines a graph

The diagonal part of A specifies a subset of marked vertices
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The Hidden Linear Function problem

Consider the corresponding quantum graph state

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge
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The Hidden Linear Function problem e

Consider the corresponding quantum graph state

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge

Imagine measuring each qubit in either the Pauli X basis (if vertex is unmarked)
or Pauli Y basis (if marked)
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The Hidden Linear Function problem \‘

Consider the corresponding quantum graph state

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge

Imagine measuring each qubit in either the Pauli X basis (if vertex is unmarked)
or Pauli Y basis (if marked)

HLF problem: Given a graph and subset of marked vertices, output any measurement
outcome x € {0,1}" that occurs with nonzero probability in this experiment.
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The Hidden Linear Function problem E\‘

Consider the corresponding quantum graph state

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge

Imagine measuring each qubit in either the Pauli X basis (if vertex is unmarked)
or Pauli Y basis (if marked)

HLF problem: Given a graph and subset of marked vertices, output any measurement
outcome x € {0,1}" that occurs with nonzero probability in this experiment.

We have defined the problem in terms of a simple quantum circuit that solves it.
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The Hidden Linear Function problem E\‘

Consider the corresponding quantum graph state

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge

Imagine measuring each qubit in either the Pauli X basis (if vertex is unmarked)
or Pauli Y basis (if marked)

HLF problem: Given a graph and subset of marked vertices, output any measurement
outcome x € {0,1}" that occurs with nonzero probability in this experiment.

The quantum circuit has constant depth if the graph is a subgraph of a 2D grid
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k \‘

To prepare the quantum graph state:
Place a qubit at each vertex in |0) state
Apply single qubit H gates to all qubits
Apply two-qubit CZ gate on each edge

The Hidden Linear Function problem

Consider the corresponding quantum graph state

Imagine measuring each qubit in either the Pauli X basis (if vertex is unmarked)
or Pauli Y basis (if marked)

2D HLF problem: Given a subgraph of \/n x \/n grid and subset of marked vertices,
output any measurement outcome x € {0,1}" that occurs with nonzero probability in

this experiment.

The quantum circuit has constant depth if the graph is a subgraph of a 2D grid
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Constant depth quantum circuit that solves 2D HLIEK\‘
@

Place a qubit at each vertex

Place input bits on vertices and edges:

U =—=1v . edge of graph
@,

1%

:  marked vertex

irsa: 21090000

Page 50/100



Constant depth quantum circuit that solves 2D HLIthE

UV==1 : edge of graph

1%

:  marked vertex

irsa: 21090000

Page 51/100



Constant depth quantum circuit that solves 2D HLF

UV =—=1v . edge of graph

. - marked vertex
%
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So the quantum circuit that solves the 2D HLF problem is constant depth and all
gates act between nearest neighbor qubits in a 2D geometry.

It also has another very special feature....
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The quantum circuit is Clifford

It's a Clifford circuit: built from 1- and 2-qubit gates
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The quantum circuit is Clifford

It's a Clifford circuit: built from 1- and 2-qubit gates

1 0 0 O
11 1 1 0 [0 1 0 o0
H‘E(l —1) S‘(o i) 2=10 0 1 o
0 0 0 —1

Clifford circuits are not powerful enough to implement most quantum algorithms.
They are special because...

‘Gottesman-Knill Theorem [Gottesman 1997]

Quantum circuits composed only of Clifford gates can be efficiently simulated
on a classical computer using linear algebra.

\ 4
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From Clifford circuits to quadratic forms

|

The quantum states prepared by such Clifford circuits (“stabilizer states”) are
associated with quadratic forms

V: affine subspace of F}
|'~/)) X 2 (_1)Q(x)l-€(x) |X) q: quadratic function Q(x) = x"Bx mod 2

X€EV £: linear function £(x) = d”x mod 2
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From Clifford circuits to quadratic forms _\‘

The quantum states prepared by such Clifford circuits (“stabilizer states”) are
associated with quadratic forms

V: affine subspace of F}
|'~/)) X 2 (_1)Q(x)l-€(x) |X) q: quadratic function Q(x) = x”Bx mod 2

X€EV £: linear function £(x) = d”x mod 2

Using this connection we get an equivalent definition of the Hidden
Linear Function problem based on quadratic forms...
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HLF as a nonstandard linear algebra problemk\‘

A Symmetric n x n binary matrix
ker(A) = {x: Ax = 0 mod 2}
g(x) = x"Ax mod 4

[, N
Fact: There is a secret bit string z such that

q(x) =2z"x  x € ker(A)
o

\ The hidden linear function!
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HLF as a nonstandard linear algebra problemm\‘

A Symmetric n x n binary matrix
ker(A) = {x: Ax = 0 mod 2}
g(x) = x"Ax mod 4

~ N
Hidden Linear Function problem: Given A, find a secret bit string z such that

q(x) =2z"x  x € ker(A)
. 4

Now we can directly see how to solve the problem in polynomial time on a
classical computer using linear algebra...
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HLF as a nonstandard linear algebra problemm\‘

A Symmetric n x n binary matrix
ker(A) = {x: Ax = 0 mod 2}

g(x) = x"Ax mod 4

4 N
Hidden Linear Function problem: Given A, find a secret bit string z such that

q(x) =2z"x  x € ker(A)
\_ )
Efficient classical algorithm:

Solve for a basis x4, x5, ... x;, of ker(A4)
Solve for z in system of linear equations q(x;) = ZZTXi
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.

So far we have defined an unusual linear algebra problem, the 2D HLF problem,
that can be solved in constant depth by a quantum computer.

On the other hand we show that it can’t be solved in constant depth by a classical
computer...

Pirsa: 21090000 Page 61/100



Shallow classical circuits

What family of shallow classical circuits is fair to compare against?

Classical gates with constant
number of input bits, constant
number of output bits. Allow
random input bits.

Constant depth
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Bounded fan-in gates

We only require the gates to have bounded fan-in (number of inputs)

X - R
2 f—f®
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Classical circuits require increasing depth k
[A

]

ny classical probabilistic circuit with bounded fan-in gates that solves the 2D HLF
problem with high probability has a depth that increases at least logarithmically.

Input A

Output
YA
Random bits Solution with
4 robability > 7/8
(from any distribution) P \ /
S

Circuit must have depth at
least c-log(n)

Pirsa: 21090000
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Proof ideas

Locality in shallow classical circuits

Each output bit can only depend on
0(1) input bits.

OR AND

Shallow circuits generalize local
hidden variable models

Pirsa: 21090000

Vs.

Quantum nonlocality

Measurement statistics of entangled
quantum states cannot be
reproduced by local hidden variable
models

Outputs of constant depth
quantum circuits have a strong
form of quantum nonlocality

Page 65/100




Locality in classical circuits

The lightcone L(z,) of an output bit z, is the set of input bits x; that are causually
connected to z,.
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Locality in classical circuits

X
(Includes random bits)

z =F(x)

“Constant-depth locality”: Lightcones of output bits have constant size

[ IL(zx)| < K¢ J

We’'ll see that the 2D Hidden Linear Function problem cannot be solved by “constant-
depth local” circuits. First consider a simpler form of locality...
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Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990][Mermin 1990]

A completely local classical circuit.

by F, 7y = F1(b1)
by F, z; = F5(b2)
bs F, 75 = F3(bs)

Inputs by, by, b; € {0,1} Outputs z4,25,2z3 € {—1,1}
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Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990][Mermin 1990]

A completely local ﬁ Local hidden variable model
probabilistic classical circuit

bl F1 Z1 = Fl(bll T)
. b, F, Zy = Fy(by, 1)
Random
bits
bs F, 25 = F3(bs,7)
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Quantum nonlocality beats completely local circuits k\‘

[Greenburger et al. 1990][Mermin 1990]

The following input/output relation cannot be realized by a completely local
probabilistic classical circuit.

bl bz b3 21Z223

0 0 0 1 “GHZ relation”
1, 1|0 -1

0 1|1 —1

1] 01 -1
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A completely local ﬁ Local hidden variable model
probabilistic classical circuit

Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990][Mermin 1990]

bl F1 Z1 = Fl(bll T)
. b, F, Zy = Fy(by, 1)
Random
bits
bs F, 25 = F3(bs,7)
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Quantum nonlocality beats completely local circuits

[Greenburger et al. 1990][Mermin 1990]

N

The GHZ relation can be realized by a completely local quantum circuit :

A

A

b, y
b

|GHZ)/ ’ U

\ . :

).

1
GHZ) = —=(1000) +111)

irsa: 21090000
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Quantum nonlocality beats completely local circuits

[Greenburger et al. 1990][Mermin 1990]

The GHZ relation can be realized by a completely local quantum circuit :

bl U fA Z1
b
|GHZ) 2 U /ﬂ Z9
b3 U ﬂg Z3
GHZ) = ! 000 111
| ) o ﬁ (l ) g | )) The circuit measures each qubit in the X or Y

basis depending on the corresponding input bit
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Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990][Mermin 1990]

The GHZ relation can be realized by a completely local quantum circuit :

b, XY Z1

b 7
IGHZ) : i 7

bs XY Z3

1
|GHZ) — ﬁ (|000) N |111)) The circuit measures each qubit in the X or Y

basis depending on the corresponding input bit
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Quantum nonlocality beats geometrically local circuit
Barrett, Caves, Elliott, Pironio. Physical Review A 75(1):012103, 2007.

Barrett et al. (2007) describe a special family of HLF
iInstances that can’t be solved with geometrically local
classical circuits:

Graph state on an M-cycle (M even).

Choose 3 qubits u, v, w on the even sublattice. Measure
u,v,win X or Y basis and all other qubits in X basis.
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Quantum nonlocality beats geometrically local circuit \E=3
Barrett, Caves, Elliott, Pironio. Physical Review A 75(1):012103, 2007.

Barrett et al. (2007) describe a special family of HLF
iInstances that can’t be solved with geometrically local
classical circuits:

Graph state on an M-cycle (M even).

Choose 3 qubits u, v, w on the even sublattice. Measure
u,v,win X or Y basis and all other qubits in X basis.

- N

Geometrically nonlocal correlations are necessary
To solve these instances of HLF, some output bit z;, must be correlated with a distant input
bit b,, b, or b,,. (i.e., not the nearest vertex of the triangle)

- 4

Pirsa: 21090000 Page 76/100



Quantum nonlocality beats “constant-depth local” circuits

Getting back to the 2D HLF problem....there are instances corresponding to any subgraph o
grid. Let’s focus on instances corresponding to cycles.

v w

A classical circuit that solves 2D HLF must have geometrically nonlocal correlations with
respect to every such cycle. (Barrett et al. example)

A probabilistic argument shows that this correlation structure is not possible unless there are

output bits with lightcones of size at least n!/. This translates to a depth lower bound 8112 gg(?;).
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Extensions and recent results

What if we make the classical circuit more powerful?

Bene Watts, Kothari, Schaeffer, Tal. In Proceedings of STOC 2019.

Classical shallow circuits still can’t solve the problem even if we allow
AND/OR gates with any number of inputs (unbounded fan-in)

AND

V%
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Extensions and recent results

What if we make the classical circuit more powerful?

Bene Watts, Kothari, Schaeffer, Tal. In Proceedings of STOC 2019.

V%

AND Classical shallow circuits still can’t solve the problem even if we allow
AND/OR gates with any number of inputs (unbounded fan-in)
Grier, Schaeffer. In Proceedings of STOC 2020. S — ——
Certain two-round interactive linear algebra T 1 ; |
tasks can be solved by shallow quantum i Ao oA
circuits but not by even more powerful . 5{01 b Round2
classical circuits. e
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Extensions and recent results

0-0-0-0—0-® Is there a quantum advantage with shallow circuits in 1D?
Bravyi, DG, Koenig, Tomamichel. Nature Physics 1-6, 2020.

Yes: 1D quantum advantage via a multi-player variant of Mermin
magic square game.
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Extensions and recent results

We know there is a speedup as measured by depth.
What about the total number of gates?

DG, Grier, Kerzner, Schaeffer. arXiv:2009.03218, 2020.

Pirsa: 21090000 Page 81/100



Extensions and recent results

We know there is a speedup as measured by depth.
@ What about the total number of gates?

DG, Grier, Kerzner, Schaeffer. arXiv:2009.03218, 2020.

The shallow quantum circuit solves the 2D HLF problem using 0(n) gates.
A classical computer can solve it with linear algebra using 0(n3) gates.
Can this be improved?

We first show that any shallow Clifford circuit can be simulated with runtime

W [Le Gall 2014]
0 (n ) 2= w=2.3729 [Strassen 1969]
Then we give a recursive divide-and-conquer algorithm with improved runtime

0 (nw/Z)
for shallow Clifford circuits in planar geometries.
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Quantum advantage with noisy shallow circuits
Bravyi, DG, Koenig, Tomamichel. Nature Physics 1-6, 2020.
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Noise model

Each layer of gates is followed by a random (Pauli) error. Think of a simple independent
noise model where each qubit is corrupted with probability p.
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Why does noise cause a problem?

Circuit which solves the 2D HLF problem:

A)
0)

0)

|0)

Pirsa: 21090000
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Why does noise cause a problem?

Circuit which solves the 2D HLF problem:

A 4)
0) Z
0) Constant depth Clifford circuit ZZ
)
5 Ca :
| 0) -fﬂ Z:

Unfortunately, noise with rate p corrupts a constant fraction ~ pn of the output bits...
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Challenges with naively using quantum error correction

Imagine input A held in a noise-free classical memory.

|14) |4)

|Om) —( Encode Decode |mww= 7,

|0m) \ Ereode Logical constant depth Clifford Decade )_ Zz
o e

Ca

| Om) —‘ Encode

/7&'—‘ Decode ‘— Zy,

Choose an error correcting code where one- and two-qubit logical Clifford gates can
be performed by constant-depth circuits.

Good news: this makes C, constant depth.
Bad news: neither the encoding nor the decoding is constant depth.
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Getting around the decoding problem

The decoding is a purely classical postprocessing step:

y1 € {0,1}" —

Y2 € {Orl}m —

Dec

VYn € {0,1}"

7z, €{01)

z, € {0,1}

e Z € {0,1}

We can fold the decoding step into the problem definition:

Define a new computational problem so that y is a solution to the new problem if and
only if z = Dec(y) is a solution to the 2D HLF problem.
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Getting around the encoding problem

The ideal encoding operation prepares a logical basis state encoded in the Q

om e 6 Can’t do this in constant depth
107) 0)

A related task which can be done in constant depth for LDPC stabilizer codes:

m-qubit Pauli operator

| Om) Measure all P(S)l 6)
code
|0manc) stabilizers IS) <+—————— Measurement outcomes

This is good enough! We can (again) modify the problem definition so that it
incorporates information about the measurement outcomes s. This part uses the
fact that the circuit is Clifford and plays nicely with the Pauli correction P(s).
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Errors in state preparation

Unfortunately a few errors in the measurement outcome s can spread to many errors

in P(s) ...
Want this to be equal to
/ P(s), modulo a

— correctible error
|0™)

j Measure all P(S + E)lO)
code
Omanc) stabilizers fﬁ S

The property that we need is called single-shot state preparation.
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Putting it together

Quantum circuit for 2D HLF problem. Or any other problem defined by a cont
Clifford circuit:

A) |4)
0) Z1
0) Constant depth Clifford z,
Ca
10) 2

Input/output pairs produced by a noise-free implementation of the circuit satisfy
arelation R(4,z) =1
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Putting it together: the noise-tolerant problem

We transform the circuit as follows

|A4)
Single shot
o35 e
|Oman

m Single shot
| O state prep
| 0™Man

m Single shot
| O state prep
| 0™Man

Pirsa: 21090000

Logical constant depth
Clifford

K CA

~A

|A)
y; €{0,1}™

y2 € {0,1}™

Yn €{0,1}"
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Putting it together

Quantum circuit for 2D HLF problem. Or any other problem defined by a cont
Clifford circuit:

A) |4)
0) Z1
0) Constant depth Ciifford z,
Ca
10) 2

Input/output pairs produced by a noise-free implementation of the circuit satisfy
arelation R(4,z) =1
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Putting it together: the noise-tolerant problem

We transform the circuit as follows

|A) |14)
Single sh

|07 stete prep. Aly, € {0,1}™
| Oman : S1 Logical constant depth

|om; -y Ay, e{o,1)™

m
|0™Man E ~A S, C A

yn € {0,1}™

| Om Single shot
state prep 7
| 0™Man Sn

Now input/output pairs produced by a noisy implementation of the circuit
satisfy a “"noise-tolerant” relation R(4,y,s) = 1.
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The noise-tolerant problem is not much easier

We prove that the new, noise-tolerant problem R is not much easier than the original
problem R.

Proof idea: Can compute a pair (4, z) satisfying R starting from a triple (4, y, s)
satisfying R using a low depth circuit with fan-in K = 0(poly(log(n)))

For the noise tolerant version of 2D HLF, we infer a classical depth lower bound

log(n)

D = constant -
log(log(n))
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So...a problem defined by a constant-depth controlled Clifford circuit c
made noise-tolerant, without making it much easier for classical circuit$®

It relies on the existence of a certain family of quantum error correcting codes...

We show that all of our requirements are met by the well-known surface code.
The new piece is the single-shot logical state preparation.

The single-shot state preparation
protocol we give is an extension of
[Raussendorf, Bravyi, Harrington
2004].

Pirsa: 21090000 Page 96/100



Concluding remarks and open problems

Studying shallow quantum circuits—motivated by near-term QCs—has taugh e
about a new kind of quantum advantage and drawn a connection between circuit
complexity and quantum nonlocality.

-
g

Experimental demonstrations?

Does quantum nonlocality play a role in quantum optimization algorithms such
as QAOA?

Can quantum nonlocality give larger speedups?
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So...a problem defined by a constant-depth controlled Clifford circuit can be
made noise-tolerant, without making it much easier for classical circuits.

It relies on the existence of a certain family of quantum error correcting codes...

We show that all of our requirements are met by the well-known surface code.
The new piece is the single-shot logical state preparation.

The single-shot state preparation
protocol we give is an extension of
[Raussendorf, Bravyi, Harrington
2004].
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Putting it together: the noise-tolerant problem

We transform the circuit as follows

|A) 14)
Single sh

|07 state prep. Aly, € {0,1}™
| Oman : S1 Logical constant depth

|om; -y Ay, e{o,1)™

m
|0™Man E ~A S, C A

~yn € {0,1}™

| Om Single shot
state prep 7
| 0™Man Sn

Now input/output pairs produced by a noisy implementation of the circuit
satisfy a “"noise-tolerant” relation R(4,y,s) = 1.
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Thanks!
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