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Program to study the physics of well-motivated light scalar fields at finite density.

vacuum energy
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Vacuum Transitions Seeded by Stars

A super-cool water analogy.
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Vacuum Transitions Seeded by Stars

A super-cool water analogy.

phase transition

final lower-energy vacuum
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Motivations
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Landscapes

Experimental evidence of a vacuum different from ours would be revolutionary.

Cosmological Constant problem

Weinberg ‘87
Bousso, Polchinski '00

Arguably the best explanation for the tiny size of the cosmological constant.
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Landscapes

Experimental evidence of a vacuum different from ours would be revolutionary.

Electroweak Hierarchy problem

Agrawal et al. '98
Dwvali, Vilenkin ‘03
Arkani-Hamed, Dimopoulos '04

No evidence of standard symmetry approaches and low short-term experimental prospects.
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IR Landscapes

Experimental evidence of a vacuum different from ours would be revolutionary.

Cosmological selection of a small electroweak scale

V(¢)

N

Graham, Kaplan, Rajendran "16

> ¢

Structured and more predictive landscape.

Many other recent ideas along with novel signatures and bright experimental prospects.
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Multi-Vacua at Finite Density

-t

Hook, Huang '19
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Finite Density and Size

Coupling to the conserved charge (number density) of the system.

n ~ (Ju=0) ~ (Y¢)

—>  Vi(g,n) ~ V() +nf(9)

Stars: finite size dense systems, non-homogeneous and non-isotropic.

Ry r

0/ n(r,t)

Spatial dependence constitutes main novelty regarding bubble dynamics.
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Scalar Potential a la Coleman

Simplest scalar potential to make the physics transparent.

2
V(p) ~ —A2 jf + AL (‘Jf—z — 1)

4
6 = 1—A—4
Ag 52 <0

Shallow Single minimum
2 <1

Page 12/53



Scalar Potential a la Coleman

Simplest scalar potential to make the physics transparent.

2
Vi)~ -a S (5 -1)

52:1—1\—3‘
- AS Ag < A
B R

Shallow Single minimum
As =~ Ax

I
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Finite Density Deformation

Motivated and predictive scenario: SM scale as source of the barrier.

A% x (Do)

B
I

A"é (n) < Ai

Classical transition between vacua allowed above critical density.

A‘é (ne) = Af{
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Finite Density Deformation

Motivated and predictive scenario: SM scale as source of the barrier.

A"é (n) < Ai

Classical transition between vacua allowed above critical density.

A‘é (ne) = Af{
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Finite Density Deformation

Motivated and predictive scenario: SM scale as source of the barrier.

A"é (n) < Ai

Classical transition between vacua allowed above critical density.

A‘é (ne) = Af{

Shallow X

n=>0
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Electroweak Scale Relaxatipn

Relaxion potential as paradigmatic case.

Osu = qHq Osm = |H|2

¢
f

+ A3(6) cos 2

my ol

Shallow

Fate of metastable minimum at finite density independent of how we got to such minimum.

16
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Formation and Expansion

no bubble

proto-bubble

Verified with numerical solutions of scalar EOM.
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Time and Length Scales

1 1 21__
b—¢"— "¢ =V,

> Ne

Vig,n>n.) =~ Aﬁ%

Typical time and length scales of a star to be compared with 1/4.
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Time and Length Scales

l’l’RTN]-

For typical stellar processes: pZ5 > 1

Scalar EOM can be ¢nitially solved in time steps; in each step time is frozen.
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Bubble Formation
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Bubble Formation

o(r < Ry) = ¢4 ~+f

Complete bubble is formed when the core is large enough.

Formation condition

1
RTz_:
7

J
AR
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Bubble Formation

Complete bubble is formed when the core is large enough.

Bubbles becomes relatively thiner if the core keep growing, until equilibrium is lost!
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Bubble Expansion

Once the bubble 1s fully formed (and thin) we can easily understand its dynamics.

4
E(R) ~ —%RBE 4 47TR201(R)

volume potential energy T
e~ —AA ~ AL

surface tension energy.

Minimization of the energy of the scalar field configuration points to instability.
R=R; — R()

" 20
R=e—— —¢
o € 7 o

Radius dependent tension leads to additional contracting force.
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Bubble Expansion

Once the bubble 1s fully formed (and thin) we can easily understand its dynamics.

4
E(R) ~ —%RBE + 47 R%0(R)

volume potential energy /[
e~ —AA ~ AL

surface tension energy.

Additional contracting force from R-dependent tension does not decay with R.

” ,
ocR~€e—o0

I

Escape condition

€20 ~
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Bubble Expansion

o(Rs) ~ o(Ry) o(Rs) ~ A2f > o(R,)

Esgape condition

Shallow

f
(mzﬁ)
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Phase Transition at Cosmic Dawn
[ |
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(successful) Phase Transition

Baumann '09
o X . dark energy
relonization g

dark ages

recombination

cosmic dawn

B
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(successful) Phase Transition

Baumann "09
alascies dark energy
reionization g

dark ages

recombination

cosmic dawn

ely transitions to lower-energy minimum:

.\1;%
L®

2 2 2
AA~A > (L) & 5 f \" (10km
Al AR”(RS) A(’!xm (1OTeV) ( Ry

For (dense enough) small stars, change in DE (cosmological constant) way too large.
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(successful) Phase Transition

Baumann '09
alascies dark energy
reionization &

dark ages

recombination

cosmic dawn

Eﬁ
10 1

10°
If the universe within our horizon completely transitions to lower-energy minimum:
s

~
f\?2 £ \?/10%km\’
CAA~AE> (D)~
RN(RS RS

For the largest stars, change in DE (cosmological constant) same order as ACDM.
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Cosmological Bounds

Constraints on early DE component recently studied in the context of Hubble tension.

109 = :
— Matter Karwall, Kamionkowski '16

_~. — Radiation

10 R < Cosmological Constant

1021

1015
1012
10°
10°
10°
10°
107

10°

10°

10 12

100

—AA < Ag x 102

Very conservative bound on vacuum energy change, yet generically violated.
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Cosmological Bounds

Constraints on early DE component recently studied in the context of Hubble tension.

107 —
— Matter 2 - Karwall, Kamionkowski 16

~. — Radiation

101® "' “s— Cosmological Constant

1021 b= =

1015
1012
10°
10°
10°
10°

10°

10°

10°

10 12

101

—AA < Ag x 107

Very conservative bound on vacuum energy change, yet generically violated.
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Relaxion
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Electroweak Scale Relaxation

Relaxion potential as paradigmatic case.

Osu = qHq Osm = |H|2

P
f

+ A3(6) cos 2

~ —AS

Shallow

Fate of metastable minimum at finite density independent of how we got to such minimum.

33
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Electroweak Scale Relaxation

The size of the potential barriers increases with field value because the Higgs VEV does.

V (k) ~ (M? — g¢pM)h? + \h*

QCD relaxion non-QCD relaxion

h(¢ h?
A3 (9) ~ A, MDD Ni(g) ~ 2810
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Electroweak Scale Relaxation

The size of the potential barriers increases with field value because the Higgs VEV does.

V (k) ~ (M? — g¢pM)h? + \h*

V(g) ~ —A2 ¢ + Aé (¢) cos ¢

i f
v

Shallow

Banerjee et al. 20

Shallow minima are always present since cutoff above TeV.
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QCD Relaxion at Finite Density

Ag it AéCD ~ Mgy (‘jq>

(qq) — (qq)(n)

4 2 £2
AB m'ﬂ"ﬂ'
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QCD Relaxion at Finite Density

Ag it AéCD ~ Mgy (‘jq>

mz [

Shallow (escape condition irrelevant)

dense enough TN large enough

Ai(n) < A% N Rs~ R 2 f/A2

- 1 ﬂ'AgCD
b~ M2

O'-NN'Uz
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QCD Relaxion at Finite Density

Both these conditions are easily satisfied by Neutron Stars and White Dwarfs,

Nns ~ 108 MeV? Rys ~ 10km
Nwp ~ 0.1 MeV? Ruwp ~ 10° km

for any reasonable values of the cutoff and decay constant:

M > 1TeV <M,

Oqcp = /2

... Ithink
I gaw 1% otdll
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Non-QCD Relaxion at Finite Density

h2
AL~ AL

Cv2

h? — h%(n)
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Non-QCD Relaxion at Finite Density

h2
AL~ AL

Cv2

(escape condition irrelevant)

dense enough I large enough

Ag(m) < Az Rs ~ Ry 2 f/A2
1

AL o2 J
ny > —= Rs 2 AZ
C
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Non-QCD Relaxion at Finite Density

Large fraction of parameter space would have led to too large change in DE.

e
log,o(M €712 /GeV)
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Non-QCD Relaxion at Finite Density

Large fraction of parameter space would have led to too large change in DE.

5 6 7 8

log,o (MY /GeV)
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Non-QCD Relaxion at Finite Density

Large fraction of parameter space would have led to too large change in DE.

ENS WD ®mSun

log,o(ME7Y%/GeV)
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Non-QCD Relaxion at Finite Density

Large fraction of parameter space would have led to too large change in DE.

ENS WD mSun

A i.; i 6 i ‘% i 8 n - T
log,o(ME;1/%/GeV)

Considering super-giant stars would require reassessment of DE bound.
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Vacuum Instability Triggered by EM Fields

Example of generalization beyond matter density effects: rotating NSs.
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Vacuum Instability Triggered by EM Fields

Similar analysis to the case of finite matter density.

Escape condition

7
A

R — Rs 2

lOg 10 (A TC /(:‘r{-“\;)

-3.0 -=-25

log,o (M2 /GeV) logyo(AR/A%c)
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Outlook
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Better Cosmological Bounds — Signatures

Baumann '09

dark energy

dark ages reionization galaxms

recombination

cosmic dawn

Many different potential probes of a phase transition at cosmic dawn.
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Density Induced Vacuum Decay

While critical densities might never be reached, barrier can get much smaller.

f4 A8

- 2
Sy ™~ 27/ 3 _A%{z

Possibility of a latent phase transition.
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Dark Compact Objects

Vacuum transitions seeded by dark neutron stars (from e.g. non-QCD relaxion).

gravity

dense enough: A‘; (n) < A4R large enough (escape condition): mj < Ag —=

f

i ’ 2 M5 \* J ’
_AAZmE (L) ~Agx10-
”mb(MP) 0 x 10 (10keV) (1OTeV)
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Conclusions

Landscape approach to fine-tuning problems brings novel phenomenology.

Much needed, e.g. for the electroweak hierarchy in view of LHC critical results.

Transitions between vacua can be triggered by finite density, e.g. in stars.

(Hook, Huang '19)
Phenomenon realizable in models of relaxation of electroweak scale.

Potential phase transition at cosmic dawn.

Any experimental signature of a different vacua would be revolutionary.

Much remains to be exp]ored within the realm of light scalar fields at finite density.

0 induced vacuum decay.
0 early universe matter domination.
O neutron star equation of state.

8 ..
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