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Abstract: To this date no empirical evidence contradicts general relativity. In particular, there is no experimental proof a quantum theory of gravity
is needed. Surprisingly, it appears likely that the first such evidence would come from experiments that involve non relativistic matter and
extremely weak gravitational fields. The conceptual key for thisis the Planck mass, a mesoscopic mass scale, and how it relates with what remains
of genera relativity in the Newtonian limit: time dilation. Indeed, current technological capabilities can amplify differences in time dilation
superposition that are much smaller than the smallest time interval that can be measured by an atomic clock. Inspired from recent proposals to detect
non--classicality of the gravitational field, we devise and examine the feasibility of an experiment that could detect a granularity of time at the
Planck scale.
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An experiment to test
the discreteness of time

Marios Christodoulou

University of Vienna

Based on scipost.org/submissions/2007.08431v2,
with Andrea Di Biagio and Pierre Martin-Dussaud.
]
which was a follow up to
On the Possibility of Experimental Detection of the Discreteness of Time,
Frontiers in Physics 10.3389/fphy.2020.00207,
with Carlo Rovelli.

(see Carlo’s talk last week at ICTP-SAIFR youtu.be/cPFj78YwIN4 for the latter)
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If proper time deviates from what predicted by
GR at the Planck timescale, how difficult is
this to detect?

* Main result: the difficulty is comparable to detecting gravity mediated entanglement
growth. We will see this with a specific hypothesis of there being a fundamental
Planckian period of time.

* A negative outcome also very interesting, it would confirm that the proper time of general
relativity is valid up to the Planck time (10™*s).

* More imminently, an easier version of the experiment could be done perhaps even
with current laboratory setups. This would still put direct bounds on the continuous
behaviour of proper time at unprecedented precision. For example, relaxing
requirements by 10 orders of magnitude, the continuity of time can be tested at 10~
seconds, way above the precision of clock measurements.

* The reason there remains a clear scientific interest in easier versions of the experiment
(as opposed to detecting gravity mediated entanglement) is because this is a quantitative
task, as opposed to a qualitative task such as witnessing or not entanglement production
which can only happen once a certain scale is reached. This provides additional strong
motivation for making intermediate steps in experimental capabilities.
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Premise: the ‘intrinsic quantum clock’ of
quantum evolution is proper time.
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Our premise is that quantum evolution goes with proper time. This is the 'Quantum Gravity
assumption’ needed to then test if proper time deviates from general relativity at small
timescales.
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Experimental setup
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Notice the conceptual similarity with the COW experiment where M was earth. Perhaps counterintuitively,
to probe a possible QG regime here we want a tiny weak mass source M instead: because we want to

measure the tiny time dilation difference 6t between the two branches due to M.
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Experimental setup
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Data would look something like this

P, would first seem to corroborate P, but if the precision is not there actually this can not be decided from the data. As the
precision begins to satisfy the inequalities we set out in the paper, only then can we say whether we are seeing P_ or not.
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Figure 1: Simulated data points with decreasing gravitational noise. The data points are obtained in the same manner
as those in figure 3, with the following difference. At cach run, a value of A is picked uniformly at random from [~ A ue, Amas
nfluence of a single mass

and the quantaty Alt 15 added to t/3 before -».lluivflrl'.; the distribution. This ]Jlmn'il::t-- sinnilates the

moving uncontrollably while statistics are collected, see section IV C. The value of the parameters is as set in table 1, while Ay, 04

i, from left to right, (200), 1/(540) sk 1/(2000) in natural units. The discontinnities become visible only if the gravitational

noise is reduced,
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Result

' : z = * Visibility of horizontal (probability axis)
Parameter Value Uncertainty

m ]
3 : 10 4, 12 4 Ap, <« — ~ ——  main trade off with
m 3x10 . ke 10 . kg / mp \/x,
M 3x107" kg 10 ke total duration of experiment (7,,,, N, N,
f 107" s [ s
[ 10~" m 1077 m * Visibility of vertical axis (parameters):
d 17 G-I] o 1072 om precision of experimental parameters, main
- st o - trade off with cryogenic/decoherence
A <4Xx107"" kgm™*° requirements and gravitational noise
Nap 100 . :
v 10° * Want t as small as possible, trade off with
. d.'.B (rcr['r J
Tiot | vear
n 0. |(}| * QGravitational noise comparable to GME
) detection (extremely sensitive)
» Casimir ok as we want d large (makes it
0.B ~ ugBlt ~ 10°T/m (B ~ 10°T) sensitive to smaller 67)
P~ 10-"P4 « Cryogenic requirements: 10~""Pa and
T < 4K comparable to GME detection
T < 4K (extremely low pressure). Trade off between

black body and imperfect vacuum effects
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