Title: What does the Path Integral imply for Quantizing Time?

Speakers: Kenneth Wharton

Collection: Quantizing Time

Date: June 18, 2021 - 10:40 AM

URL: http://pirsa.org/21060116

Abstract: "Even though path-integral formulations of quantum theory are thought to be equivalent to state-based approaches, path-integrals are rarely used to motivate answers to foundational questions. This talk will summarize a number of implications concerning time and time-symmetry which result from the path-integral viewpoint. Such a perspective sheds serious doubt on dynamical collapse theories, and also pushes against efforts to extend configuration space to include multiple time dimensions. A recently-developed map between all possible two-qubit entangled states and spacetime-based path-integrals sheds further doubt on any need to extend spacetime to a large ontological configuration space.

(References include arXiv:2103.02425, 1512.00740, 1103.2492.)"

What does the Path Integral imply for "quantizing time"?

Ken Wharton Dept. of Physics and Astronomy San José State University

Few physicists look to path integrals for interpretational questions of QM/QFT.

🖍 📖 💮 🏟

Path Integrals are best fit for Spacetime Issues

- Spacelike Foliations are irrelevant histories vs. states
- Time-Symmetries far more evident
- Classical action well-defined in curved spacetime

So why is the path integral neglected?

- "Equivalent" to canonical QM/QFT ?
- No clear way to analyze entanglement ?
- Counter-intuitive "all at once" analysis ? (vs. Universe as a Computer)

Quick Outline:

- 1) Propagators vs. Full Path Integrals (Dynamics vs. "all at once")
- 2) New Toolbox for Path Integral account of entangled states
- 3) Application: The role of temporal order in Entanglement Swapping

The Propagator

(unitary dynamics for states)

The Path Integral (testable probabilities)

Sum over all x_i to x_f paths

Explicitly Time-Symmetric Single-Particle Probabilities

$$P(\psi_i, \psi_f) \approx \left| \int \int \psi_i(x_i) \ \psi_f^*(x_f) \left[\sum_{\uparrow} exp(iS/\hbar) \right] dx_i dx_f \right|^2$$

The Single-Particle Path Integral

Sum over all x_i to x_f paths

- Can turn joint probabilities into conditional probabilities with usual "fixing" of ψ_i
- Symmetry only results when combining Dynamics + Born rule into one expression.
 - Separating out the usual dynamics breaks this path integral symmetry!
- Unobserved ψ_{calc} has disappeared! (Why demand integration in some particular order?)
- No need to integrate over paths with no support on measured ψ_f . (No sudden collapse) $\swarrow \odot \odot$

Implications and References

• If ψ_{calc} isn't ontic, it is epistemic (state of knowledge, not reality)

- Spekkens, R.W., 2007. Evidence for the epistemic view of quantum states: A toy theory. *Physical Review A*, *75*(3), p.032110. arXiv:quant-ph/**0401052**

- Wharton, K., 2014. Quantum states as ordinary information. *Information*, 5(1), pp.190-208. arXiv:**1403.2374**

• So what *is* going on? Can look to the full path integral for promising clues.

- Wharton, K., 2016. Towards a Realistic Parsing of the Feynman Path Integral. *Quanta*, 5(1), pp.1-11. arXiv:**1512.00740**

What about multiple particles / entanglement?

- Sinha, S. and Sorkin, R.D., 1991. A Sum-over-histories Account of an EPR (B) Experiment. *Foundations of Physics Letters*, 4(4), pp.303-335.

- Wharton, K.B., Miller, D.J. and Price, H., 2011. Action duality: a constructive principle for quantum foundations. *Symmetry*, *3*(3), pp.524-540. arXiv: **1103.2492**

New result: Convert any two-qubit experiment into a Path Integral-friendly geometry!

(Work with Narayani Tyagi; arXiv:2103.02425)

Step 1: Rotate Coordinates of generic 2-qubit state into a Schmidt Basis:

$$|\psi
angle = A |0
angle \otimes |1
angle + Be^{i\delta} |1
angle \otimes |0
angle = egin{pmatrix} 0 \\ A \\ B e^{i\delta} \\ 0 \end{pmatrix}$$

Step 2: Convert to which-way entanglement: Imagine two-photon source that emits photons in opposite directions, w/ different probabilities. (If measured directly, one direction is found with probability A², another is found with probability B².)

Step 3: Implement controllable parameters (basis choice, etc) with adjustable phase plates and beamsplitters.

$$\mathcal{E}_{++}^{A} = A\left(e^{i\phi_{1}} i \cos \frac{\theta_{1}}{2}\right)\left(i \sin \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{++}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i\phi_{2}} i \cos \frac{\theta_{2}}{2}\right)$$

$$\mathcal{E}_{+}^{B} = B\left(i \sin \frac{\theta_{1}}{2}\right)\left(e^{i\delta} e^{i$$

Features of Path Integral Entanglement

- All histories live in spacetime, on usual lightlike-trajectories.
 - -- No evidence of usual QM configuration space
- No unusual connection between Alice and Bob's wings of experiment.
- Alice and Bob's local settings can influence the amplitude of each entire history.
- No "Collapse" in the relevant histories
- Path Integral works the same regardless of Alice-Bob measurement order (regardless of reference frame!).

- See "Feynman Integral Symmetry Hypothesis" (FISH), in Wharton, Miller, Price (2011); arXiv: **1103.2492**

Application: Entanglement Swapping

Nonlocality via Entanglement-Swapping--a Bridge Too Far? Huw Price and Ken Wharton - arXiv:**2101.05370**.

(New unpublished work with Raylor Liu extends Path integral framework to arbitrary two-qubit *measurements* -- such as at point C. Email for details.)

> FISH + Path Integral framework Concludes: All three of these work exactly the same way!

Many think this is not "True" entanglement between A+B, despite same correlations. – Just "postselection"?

Take-Home Messages

- A good way to examine your biases is to consider alternate viewpoints of the same phenomena.
- You can now translate all your favorite entanglement experiments into path integrals: Tyagi and Wharton (2021), arXiv:**2103.02425**
- While analyzing dynamics, don't ignore the eventual measurement! (Don't mistake your lack of knowledge about the future for evidence that the future doesn't matter.)
- There's lots of low-hanging fruit to be discovered in the field of "all-at-once" quantum foundations!