Title: Relational dynamics in an emergent spacetime context

Speakers: Luca Marchetti

Collection: Quantizing Time

Date: June 18, 2021 - 9:20 AM

URL: http://pirsa.org/21060115

Abstract: I discuss the new dimension that the relational approach to the problem of time takes in quantum gravity contexts in which spacetime and geometry are understood as emergent. I argue that, in this case, the relational strategy is best realized at an approximate and effective level, after suitable coarse graining and only in terms of special quantum states. I then show a concrete realization of such effective relational dynamics in the context of a cosmological application of the tensorial group field theory formalism for quantum gravity.

Relational dynamics in an emergent spacetime context

(based on 2008.02774, 2010.09700)

Luca Marchetti

Quantizing Time conference, PI, June 18, 2021

University of Pisa LMU Munich

Table of contents

• Relational dynamics and emergence

- Introduction and effective approaches
- Effective approaches and emergent QG theories

• Effective relational dynamics in GFT cosmology

- Introduction to GFT and GFT cosmology
- Explicit construction in GFT cosmology
- Conclusions and perspectives

Emergent effective relational dynamics

2

Ñ

Number

of quanta

 $\langle \cdot \rangle_{\rm W}$

Effective relational dynamics in GFT cosmology

GFTs and GFT cosmology

Group field theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on *d* copies of a group manifold *G* with action given by

$$S[\varphi, \bar{\varphi}] = \int \mathrm{d}g_I \,\mathrm{d}h_I \bar{\varphi}(g_I) \mathcal{K}(g_I, h_I) \varphi(h_I) + V_{\text{non-loc.combinatorial}}$$

For simplicial GFT models S is obtained by comparison of the perturbative expansion of the partition function with lattice gravity path integral. *d* are the dimensions of the "spacetime to be" (d = 4) and *G* is the local gauge group of gravity, $G = SL(2, \mathbb{C})$ or, for most applications, G = SU(2).

GFTs are QFTs of building blocks of space.

Effective relational dynamics in GFT cosmology

Effective relational volume dynamics

Conclusions and perspectives

Conclusions

- A scheme to define an effective notion of relational dynamics for emergent QG theories was outlined.
- The advocated framework was realized concretely in GFT cosmology:
 - An effective volume relational dynamics with correct classical limit and possible singularity resolution has been obtained.
 - The role of quantum fluctuations on the relational picture has been investigated:
 - They are unimportant in the classical, emergent limit.
 - They may become relevant around the bounce depending on initial conditions.
- The interplay between quantum effects, emergence and relationality was highlighted.

Perspectives

- Extend the framework to include additional matter and different matter field clocks.
- Include rod fields to study small inhomogeneities and anisotropies.
- Investigate the relations between this approach and other effective approaches to the problem of time already present in literature.
- Investigate in more detail the role of interactions.
- • •

Luca Marchetti

Relational dynamics in an emergent spacetime context

6

Conclusions and perspectives