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Abstract: "We revisit the arguments underlying two well-known arrival-time distributions in quantum mechanics, viz.,

the Aharonov-Bohm and Kijowski (ABK) distribution, applicable for freely moving particles, and the quantum

flux (QF) distribution. An inconsistency in the original axiomatic derivation of Kijowski&€™s result is pointed out,

along with an inescapable consequence of the &omegative arrival times&€e inherent to this proposal (and generalizations thereof). The ABK
free-particle restriction is lifted in a discussion of an explicit arrival-time setup

featuring a charged particle moving in a constant magnetic field. A natural generalization of the ABK distribution is in this case shown to be
critically gauge-dependent. A direct comparison to the QF distribution,

which does not exhibit this flaw, is drawn (its acknowledged drawback concerning the quantum backflow effect

notwithstanding).

Based on arecent paper (https://arxiv.org/abs/2102.02661), to be published in Proceedings of the Royal Society A."
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An idealized TOF experiment. Figure
courtesy of Ddrr.

Times of arrival and gauge invariance

Given ¥ and 9G,

What is the probability
density of arrival or
detection times I1(r) as a
functional depending on
Yo and on 0G?

Note that I1(7)dz is the
probability that the particle
Is detected on dG between
times r and v + dr.

It follows that,

/(/TH( )+ P(oo) = 1.
0
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quantize classical arrival-time expressions (h = m = o = 1)’

_L—:

; —
P

1The correct classical TOF formula valid for an arbitrary initial point (z. p)
in phase space is

S (L—z)/p. sgnp =sgn(L —z).

T —
l 00, otherwise,

quantizing which seems nothing short of impossible.
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» Two proposals

“—%(/)

AA—l

lf’-{-:p )

tag =Lp
tarT =L p L — p 125 p1/2
» It turns out, formally,

7, p*] = 2il

» Echoes of “Pauli's Theorem” (1933).
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» Two proposals

“—%(/)

AA—l

lf’-{-:p )

tAB =Lp
tarT=Lp L — p 123 p1/2
» It turns out, formally,

7, p2] = 2i1 |

» Echoes of “Pauli's Theorem” (1933).
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» Operators are not self-adjoint, have negative eigenvalues,
never mind, ...

» Provide well-defined Positive Operator Valued Measure
(POVM).

» In particular,

I

o0
Mag(7) = 5 > f dp 6(ap) V|pl {pl¥o)

«JT o'e)

=

it 5 :
X exp(— % e ipL )| .
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0
Normalizationf dt Iag(7) = 1

—oQ

o0
Discard r < 0, i.e., Pag(o0) = [ dr IIag(—1).
0

- Cannot use usual quantum formulas like () = (

And, if we do, (r) = 0 vanishes for any real ¥(z):

(V|T|w) = i‘r[rﬂd: dz' (2L —z —z")sgn(z —z')
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» I1ag(7) decays too slowly to have a finite Az, unless

lim p~3/2 (

g = 0.
b P|vo)

» This then precludes states o exp(—az? + ifz) that are
experimentally accessible.

» Even if we restrict attention to finite Ar wave functions, the

Robertson-Schrddinger uncertainty relation does not
obtain.
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Freely moving particles, for which

it
(plys) = (Blyo) exp(— 5 ?),

Applicable for G = {x e R? |z = L}.
Initially, focused on (p|v) = 0, p; < 0.

Arrival-time distribution of the form:

[kij(7) = F((-’"”‘"L (Pll.ffo))

Times of arrival and gauge invariance Siddhant Das
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» Postied axioms:
> F(y) > @,

F(y™*) = Fy).
F(UY) = F(¥).

o0

/ It 12 F(Y,) < o0,

o0

> Many_f?(‘) satisfy this, but

|
Fo(y) = 73?/ dpy dpy

is special.

Times of arrival and gauge invariance

[k dt F(V;) = (Yol|ve) = 1.

)

o

dpz \/P: J}(p)

2
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» Fo(-) was unique, in that

o0 o0
f di t F(Y;) = [ dt t Fo(yre),

o0 o0

o0 o0
f dt t> F(y;) > [ dt t% Fo(y;).
—00 —00

given any admissible F

» Form generic wave functions, he suggested,

f dp; B(ap;)

2

Times of arrival and gauge invariance

Siddhant Das

Page 14/21



» Postied axioms:
» F(y) >0,
F(y*) = F(y)
F(Uv) = F).
o0
[ dt F(¥:) = (Vol|o) = 1.

oC

~o
f it ¥ F(Y:) < o0,

>

» Many 1:“(~) satisfy this, but

r)

| e "
Fo(Y¥) = 7 / dpx ('!/)y f dpz /pz V(p)
R2 0

is special.
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» Fo(-) was unique, in that

o0 o0
fa’rrF(ybr,):/ dr t Fo(yrs).

o0 o0

00 00
f dt t> F(y;) z[ dt t% Fo(y;).

oo o0

given any admissible F

» Form generic wave functions, he suggested,

f dp; B(ap;)

2
X v |pz| (Pl¥r)
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Defined by

HQF(T)I J(x.7) - ds.
0G

h
Jx. 1) = —Im[y*(x. ) VY (x.7)] — gA(X. 1)

m

Naturally motivated from Scattering considerations, correct
physical dimensions, automatically normalized.

Defined for generic G and electromagnetic potentials.

But doesn’t define a (POVM) [Vona,Hinrichs, and Durr,
Phys. Rev. Lett. 111, 2013]
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spreading is observed, thanks to an effective harmonic confinement o r* induced by the magnetic
field (3.1).

The ‘standard arrival-time distribution’ for the primed wave function can be evaluated as
follows: First, in view of (2.20), we note

~ l;‘iu .". UU . 1 2 5 7 4 2 =
v(p)= A T+ exp [2(p1. +py +oBp; )] g (3.8)
where : ’
— = +in. 3.9
a® 1+t B

Incorporating the same into (2.19), and performing the Gaussian integrals over px and py, we are
left with

) rr(r]\
smp(1) = — " Z [ dp, O(ap;)/p- \up(

2/m3(1+12) )u_‘.

"

;?'-I-l;? L) . (3.10)

Separating this integral into positive and negative p, contributions and letting p, — —p. in the
latter, yields via [86, eqn 3.462.1]:

o (1)] .- i a

87 (1 + 1) o (7)) 2o (1)| Vvol(r)

Here, D,,(-) denotes the parabolic cylinder function of order v (reducing to the familiar Hermite
polynomial for v=0,1,2... [86, eqn 9.253]). The ‘standard distribution” for the unprimed wave
function is obtained by setting 7 =0 in the above.

Since (3.11) depends non-trivially on » (figure 1), and each value of 5 defines the same
physical magnetic field (3.1), the ‘standard distribution’ is not gauge-invariant. Furthermore, for 7

non-zero,
const.

Mstp(t) ~/Inl e L72 ( & O(T_E]) ; (3.12)

as T — oo. Consequently, (3.11) is unnormalizable, hence cannot be a physical probability

distribuition At this nnint one mav he temnted tn <ot Ba =0 wherehv the maonetic field

uiysiignd£iaosiedol

LOLOLZOT “LLE b 20S Y D014
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Figure 1. Arrival time distributions ITg eu(t) and ITsp(r) versus (dimensionless) amival-time (gBp/m)t for
L =100./1/gBy and select values of n annotated in the figure. The QF/BM distribution is gauge-invariant, hence
independent of ;. (Online version in colour.)

It is also informative to directly compute the Bohmian arrival-time distribution for this case.

First, the guiding equation (2.23) implies for either vector potential the component equations
’ , . t :
I{a - 0, d)l = 1 al‘ld Zg = fzh (31(1)

1+t
where X; = R;(cos &:x + sin &;y) + Z;Z is the position of the particle at time {. For an arbitrary
initial condition X, the solutions are given by

Ri=Ry, &, =Pp+1t, and Z;=Zpv1+1. (3.17)

Physically, the Bohmian trajectories are circular helices of radius Rp that circulate in an

[ 1 . 1 - - = PO | . L I | 1 T L o= o . 11

y 2044 edsi/eunol/bio-buiysiigndAiaidosiefol

.=

-
~J
=~
Ll
[
N
<
-
=
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22,35,83], wherein the significance of the backflow effect has been persistently emphasized. For
free particles, the differences are indeed negligible, since

Ld: PRSP
Mii(0) ~ = [io (—)‘ : \228)
- s | T

once L, 1 with L/t ~O(1) (see [4] for details), thereby agreeing with Igp(r) via
equation (2.27). In a few examples containing simple interaction potentials, we found good

r

agreement between the QF and the ‘standard distribution’, although a general argument is far

from available.

3. Arrival time statistics in a constant magnetic field

In this section, we consider a direct extension of the ‘standard distribution’ to vector potentials,
letting H be the minimally couplod Hamiltonian in equation (2.20). To illustrate its consequences,
we describe next a simple arrival-time experiment involving a spin-0 particle of mass m and
charge ¢, moving in a constant magnetic field

B(x) =2Byz, (3.1)

directed along the z-axis of a right-handed coordinate system. The particle is prepared in a
suitable wave function at time zero, ¥o(x), and arrival times are monitored at a distant planez=L.
As a pretext for the relevance of this problem outside its present context, we mention the TOF
measurements of single charged particles moving within a Penning trap in mass spectrometry
applications, and that of electrons emitted from quantum Hall edge states [84,85, p. 9]. In what
follows, we employ cylindrical polar coordinates x = (r, ¢, z), considering two vector potentials

A(x)=Byr¢ and A'(x)=A(x) — nz2, (3.2)

that yield (3.1), i.e. V. x A=V x A"=B. Here, 7 is a free (real) parameter that can be changed
without altering the physical magnetic field under consideration. The vector potential A
corresponds to what is often called the symmetric gauge, and satisfies the Coulomb gauge
condition V + A =0. The vector potentials are related by the gauge transformation

s
~

=
&
~J
=~
.
o
o
=
=
=
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ambitions, once the unphysical ‘negative arrival times’ inherent in them are taken seriously. The
QF distribution is a natural candidate for the arrival-time distribution in quantum mechanics
but does not enjoy unrestricted applicability due to the backflow effect. This defect is remedied
by the Bohmian arrival-time distribution from which the QF was derived. On the other hand,
there are often serious difficulties met in realizing stable backflow situations experimentally (see,
however, [81,87,88]). Thus, ITor is unproblematic for most practical purposes, even though it does
not follow from a generalized quantum observable (or POVM).!?

Finally, the ’‘standard distribution’, understood as a natural generalization of the ABK
free-motion result, cannot be applied to vector potentials in the manner explored in §3, as
it fails to be gauge-invariant. Finding a gauge-invariant generalization therefore remains a
challenging and important task for its proponents, as electromagnetic fields are essential to
any realization of a TOF experiment. As a first step, one might restrict attention to freely
moving charged particles alone, where free motion is taken to mean, as usual, vanishing E and
B. The electromagnetic potentials, however, are non-zero, satisfying A=V and V =—3d./dt,
where A(x,!) is an arbitrary real function. The most general Hamiltonian describing this
motion is thus H(}J =(p — (]VME /(2m) — gda/dt. A self-consistent free-motion TOF distribution,
IT; (t) = F(¥s, 1), given by some positive functional F, and a solution Y (x) of Schrodinger’s
equation with Hamiltonian FI(1), would be expected to have a vanishing functional derivative,
i.e. 8IT;,(7)/81 = 0. In addition, one could require that I7;(r) reproduce ITk;(r) whenever i(x, f)
is a constant, for which H(}) = ;32,-" 2m). It is an interesting question whether such a [T; could be
associated with a POVM and, if so, what general POVM structures would be compatible with it.
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2From a Bohmian perspective, this is not a showstopper since the notion of an observable is absent in the fundamental
posits of this theory (see also [89]). In this context, one could even argue ‘that the significance of the [observables] has
been exaggerated, in the sense that elements entering into useful mathematical techniques have been raised to the level
of fundamental concepts entering into the physical theory” [90].
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