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Abstract: A possible solution of the problem of time in quantum gravitational systems is presented based on a relational description between the
parameterized Dirac observables of the system under consideration and the clocks. The use of physical clocks required by a quantum gravitational
description of time is shown to induce a loss of unitarity. The evolution is described by a Lindblad-type master equation unless it is possible to
construct a perfect clock. | show that fundamental uncertainties in time measurements could arise due to quantum and gravitational effects, leading
to the conclusion that there is aways a loss of unitarity induced by the use of physical clocks. The extension of the analysis to physical reference
framesin totally constrained systems is sketched.
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INTRODUCTION

There is by now extensive literature addressing the problem of time in Classical
and Quantum Gravity.

The heart of the problem lies in the fact that Einstein gravity is a fully

constrained system whose Hamiltonian vanishes.

Observable quantities are those that commute with the constraints, that is they are
Dirac Observables, and therefore, they do not evolve and cannot represent time.

I will discuss here three approaches to this problem.
They have in common their relational character. In fact, one of the basic ingredients in
the different proposals to describe evolution is the use of relations Between

different degrees of freedom in the theory .

The first and older approach is gauge fixing

The second approach is based on the concept of relational or evolving Dirac observables.

The third one is the conditional probabilities approach proposed by Page and Wootters.
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Hoehn, Smith, and Lock e-Print: 1912.00033 [quant-ph] have recently shown that

the three approaches are essentially equivalent, and they may be implemented at
the gquantum level.

At the quantum level all of them require the use of magnitudes only defined

in the kinematical space before imposing the constraints and therefore it is not
clear how to describe the evolution in terms of the observable time measured by a
physical clock.

For us, the central problem of time in generally covariant systems is not to recover a
Schroedinger or Heisenberg type of description in terms of an ideal external
parameter t that is not a Dirac Observable . It is to find a description of the evolution
where time is measured by clocks in a quantum generally covariamt world.

We have noticed some time ago that a combination of the approaches discussed above
provides us with such a description.

It is possible to define correlations between Dirac observables that describe both the
system and the clock on equal footing and, in terms of them, define conditional probabilities.

As we shall see the procedure can be extended to physical frames of reference
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The problem of time in totally constrained systems like
Quantum Gravity:

| start by recalling how time is usually introduced in totally constrained systems.

In totally constrained systems, the Hamiltonian vanishes It is a linear combination of
constraints:

The generator of the evolution also

HT = ﬂa¢a (q, p) generates gauge transformations

Dirac observables are gauge invariant quantities

{0(q,p), 9, (ql,p)} ~0 {0(q,p),H;(q,p)}~0

Therefore, they are constants of the motion. Only Dirac observables can be quantized in
the space where the constraints are fulfilled: called the physical space. We live in a
generally covariant Universe where all observable magnitudes are constants.
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At the quantum level the observable magnitudes are operators acting on a Hilbert
space th defined by

|¢ >phe th ¢(Qaﬁ)|¢ >ph: 0
If Q is a Dirac Observable, it satisfies Q|’§D >ph,€ th

because [Qa qb] =0 but a kinematical gauge dependent variable

g° such that [¢°,d(q,p)] # O

¢’ >ph? Hpn G°| >kin€ Hiin
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The issue of time: If the physically relevant quantities in totally constrained systems as
general relativity are constants of the motion, how can we describe the evolution?

1) Gauge fixing: One starts by identifying some dynamical variable of the classical
kinematical space as a parameter that plays the role of time variable

T = f(g,p) n=q°

2) Relational observables: Bergmann, DeWitt, Rovelli, Dittrich

{Qf (r)9 ¢a } ~ O C:); {{" (]ﬂ “})a ) |:-ql: (]z'

For instance, for the relativistic particle. 7 2 7
One has two independent observables: ¢ - PD _ P —In

i q". ot.q".p)=X PR

2 2
Jpi+m NP tm
) . Notice that one needs to assume that there are
Q(f =q .qa. )2 = q variables as qu that are physically observable,
even though they are not Dirac observables.

PN =q-
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The idea is that one promotes all variables to quantum operators and computes
conditional probabilities among them. This idea appears simple, natural and
attractive in a closed system.

Hoehn, Smith, and Lock arXiv:1912.00033v2 have recently shown how the
Page-Wootters approach can be treated consistently but like the previously mentioned
proposals it requires the use of quantities that are not Dirac observables: Positive
operator-valued-measures defined in the kinematical space.

In any of these approaches one encounters the same issue: evolution can only be
described in terms of a time variable that cannot be defined in the physical space
of states.
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Using real clocks: conditional probabilities in terms of evolving Dirac observables.

As we have seen, all the approaches require the use of variables which are not

defined in the physical space. But then: how is it possible to describe the evolution

in terms of physical clocks in general covariant systems like our Universe?

We have considered an approach where all reference to external parameters is abolished,
and the evolution is defined in terms of correlations between Dirac observables.

First one chooses an evolving observable as the clock, let us call it T{t) .
Then one identifies the set of observables O;(t)...0\(t) that commute with T
and describe the physical system whose evolution one wants to study. One computes

J7, dt Tr (Po,(t) P, (t)p Py, (1))
I7, dt Tx (P (t)p)

P (0 €0y — AO,0p + AO||T € [Ty — AT, Ty + AT]) = lim

I

tis the parameter used to define the evolving observables. This variable is treated as an ideal
unobservable quantity that evolves at constant rate.

We have shown that this definition leads to the correct propagators plus quantum
corrections.
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Assuming that 0 = Pgys @ Pcl

7, At Tr (Usys(8) Po(0) Usys(8)Uct(8) Pr(0)Ue(t) psys ® por)
P(0O €[00+ A0|T € [To £ AT)) = lim T (PrOpe) T (o)

f_Tr dtm (Usys(t)tpo (0) Usys(t)psys) Tr (Ucl (t)i—PT(O)Ucl(t)pcl)

lim

T—00 ij dtTr (PT(t]Pcl) Tr (psys)

one can show that the system may be described in terms of an effective density matrix

Tr(Pr, (0)Ua(t)palUa(t))

. dt Usys(t) psysUsys(t)'Pe(T) ol I, dt Tr(Pry(t)pa)

fdr??(T) =1 where 7P:(T) isthe probability that T is observed when the
ideal time takes the value t

) =
) Tr(pesr(T))
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If the clock has certain dispersion the effective density operator will involve a
superposition of unitary operators and the use of real clocks may lead to a loss of
quantum coherence and therefore to corrections to the standard propagation

The underlying unitary evolution of the evolving Dirac observables in the ideal time t is
crucial, yet unobservable. All we observe are the correlations in physical time, then it is
not surprising that they present a fundamental level of decoherence due to the
intrinsically quantum and gravitational limitations of real clocks.

If we assume the “real clock” is behaving semi-classically the Schrédinger evolution
is modified:

—fhg—p=[f?, Pl oA, pI]+ ...
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Where o(T) is the rate of spread of the wavefunction of the clock. The evolution is
given by a master equation of the Lindblad type. Pure states evolve into mixed states.
The use of physical clocks required by a quantum gravitational description of time
induces a fundamental loss of unitarity unless it is possible to define a perfect clock.
Perfect clocks allow to recover the Schrf)edinger evolution.

Of course, this loss of coherence is typical of imperfect clocks. It has been observed
in Rabi oscillations.

R. Bonifacio, S. Olivares, P. Tombesi et. al,, ]. Mod. Optics, 47 2199 ( 2000) PRA61, 053802 (2000).
And an experimental illustration was proposed by

Ekaterina Moreva, Giorgio Brida , Marco Gramegna , Vittorio Giovannetti , Lorenzo Maccone,
Marco Genovese, Published in: Phys.Rev.A 89 (2014) 5, 052122

Are there fundamental limitations of how good a clock can be?

As we do not have a complete theory of quantum gravity this is a contentious issue.
Phenomenological arguments have been given by Salecker-Wigner, Ng, Karolyhazy, Lloyd,
and Frenkel leading to similar estimations based on two main effects: quantum
fluctuations or black hole formation.
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We have recently given a simple argument leading to a fundamental minimum uncertainty in
the determination of time intervals consistent with the previous estimations. It only relies in
the uncertainty principle and time dilation in a gravitational field.

te

One considers an electromagnetic source at the frequency that maximizes the probability that
a particle transitions between levels. The source emits photons that interact with a
microscopic system and induce transitions. This frequency is used as standard of time
measurements. The precision grows with the frequency of the oscillator. But the higher the
frequency of the oscillator the higher the uncertainty in the mass-energy of the microsystem
and, due to time dilation, in the time interval measured by a macroscopic observer

AFAL, ? h. t =

Al

Energy fluctuations induce - /\/

uncertainties in the relation Observer Clock
betweentand t,
A t=Ne At=h je

At > tl/Btp2/3 Al > l1/3lp2/3 R.G and J. Pullin J.Phys.Comm. 4 (2020) 6, 065008
e-Print: 2006.08730
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If the best accuracy one can get with a clock is the given above, the master equation
will induce a decay of the out of diagonal terms of the density matrix.

2 —T4/3

i ,—iWnm T ~—Wnm 1 e __’]"-‘-""'.)‘
l)(z JHI’N — ;);“”((])f ' € Planck n

Pure states evolve into statistical niixtures, the out of diagonal terms of the density matrix
in the energy basis asymptotically vanish, and the system would present a fundamental loss
of coherence due to these effects.

The computation of conditional probabilities in terms of evolving Dirac observables may be
extended to include physical reference frames.

Quantum Reference Frames

This loss of coherence is also present when one uses a relational description of positions with
respect to physical reference frames. Systems that can be described by pure states in an
external frame must be described using mixed states in terms of relative coordinates.

S.D. Bartlett, T. Rudolph, R. Spekkens and P.S. Turner, New J. Phys. 11, 063013 (2009)
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The example of the sl(2R) Model.
This is a model with two Hamiltonian constraints and a diffeomorphism constraint.

This allows to address the issue of “different foliations” in time.
The canonical pairs are  (u;,p;) and (v;,m;)i=1...N The constraints are,

L 1 &
H, == 2 _ - 2
1=9 Z;pi 2 Zl:vi And their algebra is,

e i
HQ:§ZW?—§ZUE {HI:H'.?} - D1
= L=t {H,, D} 2H,,

D=up—vm {H,, D} —2H,.

M. Montesinos, C. Rovelli and T. Thiemann, Phys. Rev. D 60 (1999)
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ey T S, o |
The observables of the model are: 0ij = zjzj — rz;.
F = (u1,...uN,T1,...TN),
Where: ? t

1_:'2 (plu"'pNavla"'UN)

There exist 2 (2N-3) independent observables
1

For instance, for N=2 we have two independent Dirac observables and
two parameterized Dirac observables depending on three parameters
x,y,z corresponding to three kinematical variables.

Eis z(zcosd + egeqysing) +r

€2y COS P — z€ey Sin g
P, = exysing + e1zcos8¢

Uiz = uz,y = v1,2 =02,01,02) = Uy
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One can introduce a time structure and an inner product such that the parameterized Dirac
observables turn out to be, at the quantum level, self-adjoint operators on the
corresponding Hilbert space that evolve unitarily. However, for N=2 it is not possible to
introduce physical clocks and frames, because we do not have enough commuting
parameterized observables that can play the role of reference frames.

In order to implement a physical reference frame, we need to consider the N=4 model
There exist ten independent observables, which we will call ¢; ... ¢g,and p

One can show that the ten independent observables can be promoted to self
adjoint operators and identify self adjoint parameterized Dirac observables that depend
on a suitable triad of kinematical parameters.
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Conditional probabilities may be introduced by identifying three independent commuting
Dirac observables X (z,y,2) X2(z,y, 2) X3(x,y, 2)
that play the role of physical clocks and rods.

We know how to identify simple clock and frame variables in the kinematical space by
extending the Hohn, Smith, and Lock technique.

This allows identifying an integration measure that correspond to a given choice of frame
variables for the computation of conditional probabilities in the SL(2R) model.

- fdmfdyfdz#.(m,'y,Z)']}(PCJDPXlOPXE{JPXSOPPXIDPXEDPXSU)
Jdz [ dy [ dz Tr(Px,0Px,0Px,0p) u(z,y, 2)

P(Ooleoa X205 XSG)
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Deviations from covariance induced by physical reference frames?

In the general relativistic case, instead of a finite number of parameters one should
parameterize the system with functions that describe for instance the foliation used.

Even if the quantum theory includes the Dirac observables that are present in classical G.R.,
the metric like any frame dependent object could show deviations from covariance, due to
Planck scale limitations in the definition of physical reference systems in terms of
conditional probabilities.
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Mischa Woods
To know when the measurement is carried out, we need to observe a gauge dependent

quantity. There is not any physical clock able to measure an elapsed time in terms of the
kinematical variable ¢ .We shall call the quantity that plays the role of ¢ ideal time.

The requirement that the relational observables be self-adjoint is very restrictive in any totally
constrained system and imposes strong limitations on the type of ideal time that can be used
at the quantum level. Generically, the problem appears when the “equal time” surfaces

T = Tp are not transversal to the orbits. In non-relativistic quantum mechanics only the
Newtonian time is transversal to the orbits.
In the relativistic case any spacelike surface is transversal to the orbits of the particles. We will
further restrict the kind of ideal times that we will consider to “simple” clocks in the sense of
Hoehn Smith and Lock. Clocks that change at a constant rate along the dynamical trajectories

{T’ HC} — U(HC) constant of the motion and such that Cy =Hg+ Hg=~0,

it is assumed that clock and system do not interact.

From now on we will restrict the notion of relational Dirac observables to the self adjoint
operators that evolve unitarily in the ideal time.

Pirsa: 21060108 Page 20/28



The issue of time: If the physically relevant quantities in totally constrained systems as
general relativity are constants of the motion, how can we describe the evolution?

Mischa Woods

1) Gauge fixing: One starts by identifying some dynamical variable of the classical
kinematical space as a parameter that plays the role of time variable

T=f(q,p), T=q0

2) Relational observables: Bergmann, DeWitt, Rovelli, Dittrich

{Qf(r)9¢a} EO g_)j(f"(]ﬂ"})a) .f-ql: (]z‘

For instance, for the relativistic particle. 7 2 7
One has two independent observables: (/5 - PU _ P —Imn

}) qﬂ“ (_:__)(f.qa-zja_) =‘\' +}7))‘

2 2
Jpi+m NP tm
) . Notice that one needs to assume that there are
Q(f =q .qa. D, )= q variables as qu that are physically observable,
even though they are not Dirac observables.

p.X=q-
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The idea is that one promotes all variables to quantum operators and computes
conditional probabilities among them. This idea appears simple, natural and
attractive in a closed system.

Hoehn, Smith, and Lock arXiv:1912.00033v2 have recently shown how the
Page-Wootters approach can be treated consistently but like the previously mentioned
proposals it requires the use of quantities that are not Dirac observables: Positive
operator-valued-measures defined in the kinematical space.

In any of these approaches one encounters the same issue: evolution can only be
described in terms of a time variable that cannot be defined in the physical space
of states.
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The problem of time in totally constrained systems like
Quantum Gravity:

| start by recalling how time is usually introduced in totally constrained systems.

In totally constrained systems, the Hamiltonian vanishes It is a linear combination of
constraints:

The generator of the evolution also

HT = ﬂa¢a (q, p) generates gauge transformations

Dirac observables are gauge invariant quantities

{0(q,p),9,(q,p)} =0  {0(q,p),H;(q,p)} =0

Therefore, they are constants of the motion. Only Dirac observables can be quantized in
the space where the constraints are fulfilled: called the physical space. We live in a
generally covariant Universe where all observable magnitudes are constants.
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Assuming that 0 = Pgys & Pcl

. fIT dt'Tr (USYS(t]iPO (0] US.YS(t)Ucl(t)iPT([])Ucl(t)Psys ® Pt‘.l)

m f—TT d't 'TI' (Usyﬁ(tjtpo (o) Usys(t)psys) ’I‘T (Ucl (t)i—PT(U)Ucl(t)pcl)

R fj, dt Tr (Pr(t)pc1) Tr (psys)

one can show that the system may be described in terms of an effective density matrix

0 o Te(Pry(0)Ua(t)palal(t)?)

f)i-‘ff(T) i f dt L"'s_‘rs(t_].os}'sL'rs_\'s{t_)T'p! ET) Pl) = ]ﬁl dt TT{P];_:,(f}[)(.])

OC

fdr??(T) =1 where 7Pi(T) isthe probability that T is observed when the
ideal time takes the value t

I Tr(Fou(0)pe(T))
B —
PARIT) = = (D))
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Where o(T) is the rate of spread of the wavefunction of the clock. The evolution is
given by a master equation of the Lindblad type. Pure states evolve into mixed states.
The use of physical clocks required by a quantum gravitational description of time
induces a fundamental loss of unitarity unless it is possible to define a perfect clock.
Perfect clocks allow to recover the Schroedinger evolution.

Of course, this loss of coherence is typical of imperfect clocks. It has been observed

in Rabi oscillations.

R. Bonifacio, S. Olivares, P. Tombesi et. al,, ]. Mod. Optics, 47 2199 ( 2000) PRA61, 053802 (2000).
And an experimental illustration was proposed by

Ekaterina Moreva, Giorgio Brida , Marco Gramegna , Vittorio Giovannetti , Lorenzo Maccone,
Marco Genovese, Published in: Phys.Rev.A 89 (2014) 5, 052122

Are there fundamental limitations of how good a clock can be?

As we do not have a complete theory of quantum gravity this is a contentious issue.
Phenomenological arguments have been given by Salecker-Wigner, Ng, Karolyhazy, Lloyd,
and Frenkel leading to similar estimations based on two main effects: quantum
fluctuations or black hole formation.
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We have recently given a simple argument leading to a fundamental minimum uncertainty in
the determination of time intervals consistent with the previous estimations. It only relies in
the uncertainty principle and time dilation in a gravitational field.

te

One considers an electromagnetic source at the frequency that maximizes the probability that
a particle transitions between levels. The source emits photons that interact with a
microscopic system and induce transitions. This frequency is used as standard of time
measurements. The precision grows with the frequency of the oscillator. But the higher the
frequency of the oscillator the higher the uncertainty in the mass-energy of the microsystem
and, due to time dilation, in the time interval measured by a macroscopic observer

AFEAt. > h. t =

Al

Energy fluctuations induce - /\/

uncertainties in the relation Observer Clock

between t and t,
A t=Ne At=h je

At > tl/Btp2/3 Al > l1/3lp2/3 R.G and J. Pullin J.Phys.Comm. 4 (2020) 6, 065008
e-Print: 2006.08730
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Using real clocks: conditional probabilities in terms of evolving Dirac observables.

As we have seen, all the approaches require the use of variables which are not

defined in the physical space. But then: how is it possible to describe the evolution

in terms of physical clocks in general covariant systems like our Universe?

We have considered an approach where all reference to external parameters is abolished,
and the evolution is defined in terms of correlations between Dirac observables.

First one chooses an evolving observable as the clock, let us call it T{t) .
Then one identifies the set of observables O;(t)...0\(t) that commute with T
and describe the physical system whose evolution one wants to study. One computes

J7. dt\r (Po,(t) Pr, (t)p Py, (t))
I7, dt Tx (Pr,(t)p)

P (0 €[0y — AO, 0y + AO|T € [Ty — AT, Ty + AT]) = lim

tis the parameter used to define the evolving observables. This variable is treated as an ideal
unobservable quantity that evolves at constant rate.

We have shown that this definition leads to the correct propagators plus quantum
corrections.
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Assuming that 0 = Pgys & Pcl

7 At Tr (Usys(8) Po(0)Usys(t)Uai(t)! Pr(0)Uci () psys ® pr)
P(0 €[00+ AO|T € [T £ AT)) = lim T (Prpa) T (o)
lim f_Tr dtTr (Usys(t)tpo (0) Usys(t)psys) Tr (Ucl (t)i—PT(O)Ucl(t)pcl)
i ij dt Tr (Pr(t)pa) Tr (ﬁ'sys) -

one can show that the system may be described in terms of an effective density matrix

_ o e P(T) = L Pr, (0)Ua(t)pala(t)T)
p‘_\ff(T) i ‘/; di {m‘_.,“)[)sh[:\a“) P!(T)I t . [‘:&x dt TT(PI};;.(f}»O('])

oC

fdr??(T) =1 where 7Pi(T) isthe probability that T is observed when the
ideal time takes the value t

C Te(Poy(0)pea(T))
) =
POIT) = = (D))
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