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Abstract: The kappa-Minkowski noncommutative spacetime has been studied for a long time as an example of quantum spacetime with nontrivial
commutation relations between spatial and temporal coordinates which, at first sight, seem to break PoincarA© invariance. However
kappa-Minkowski is invariant under a Hopf-algebra deformation of the PoincarA© group, which involves some noncommutative structures that
prevent the sharp localization of reference frames. | will describe recent progress towards the consistent construction of quantum field theories on

this spacetime, and the identification of physical predictions that genuinely distinguish kappa-Minkowski from ordinary, commutative Minkowski
spacetime.
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Noncommutative spaces

o Gel’Fand—Naimark 1940’s:

Commutative Algebras <———— Topological Spaces

Connes 1970’s:

Commutative Algebras Topological Spaces

Noncommutative Algebras 777
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Topology, algebrized

Commutative algebra of continuous functions on a manifold C'(My):

(f - 9)(@) = f(z) g(=),

this algebra defines a topology on the manifold.

E.g., acylinder: f(z,y + 27) = f(x,y),

or a 2-torus: f(x 4+ 27 n,y + 27m) = f(z,y).

Coordinate functions «" are elements of C'(MM) that distinguish points, i.e.:

' (p) #2'(p) & p#p .

Probability measures belong to the set S[C'(M)] of states on C'(M)
(positive linear functionals blah blah...).

Pure states are evaluation functionals E..(f) = f(x),
i.e. delta-function probability distributions — points.

Page 4/28



Pirsa: 21060088

Generalization to noncommutative algebras

C(RR?): commutative algebra of functions on phase space,
generated by the coordinate functions (p, q).

C};(IR2): non Abelian deformation of C'(R?) into the Heisenberg algebra:

[p,gl =ih, pl=

O,

gt =4q.

3

C5(RR?) can be thought of as the closure of the algebra of ordered

polynomials in p, g. Popular quantum operators are (limits of) polynomials:

= . 1
Xp)7 V(q):_Tv
q

!
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Q|

2 1 . A 2
H=§(p2+q2), (P x
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2
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Now states are mappings from observables (self-adjoint elements of C},(IR2),
e.g. H, L etc.) to their expectation values.

The set of states S[C};,(IR2)] does not contain
any state that is perfectly localized in p and 4.

Now we would like to interpret noncommutative algebras
as algebras of “functions” on “quantum manifolds”.
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r=-MinkowsKi

Motivation:
3D Quantum Gravity (a topological QFT, better understood than full 4D QG).

Coupling 3D QG to point “particles” (conical defects) and integrating away the
gravitational degrees of freedom, one is left with an effective theory with
r-Minkowski commutation relations.

A similar argument, but with scalar fields, gives rise to a noncommutative
QFT with x-Minkowski commutation relations

The most popular version of the k-Minkowski algebra is:
& =-2", [#,#]=0, ~w~L;'?

(in 2D it's also the only nonabelian real lie algebra [£, £] o &).
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x=-MinkowsKi

Remember undergrad QM courses, where they taught us that:

No0000000 you can't just make
time into a quantum operator!!!!
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So, why can we ignore the wisdom of our teachers and just go
o] = L

The problems with defining a quantum £ operator:
e Pauli: if £ = £ then H cannot be bounded from below

e Time-energy uncertainty relations not universal as position-momentum
ones

e Difficulties with defining ¢'s domain and the Schroedinger equation

stem from the request that £ be treated, in nonrelativistic QM,
on the same footing as & = the “position” observable of a point particle.
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But, in QFT, neither time nor position coordinates can be observables:

Malament’s theorem (1966): (translational covariance + energy condition +
locality) are incompatible with localizability, i.e. the existence of projection
operators representing the operation of localizing a particle in a certain
spatial region, which are orthogonal for disjoint regions.

Conclusion: both ¢ and z* are not observables, but rather c-number
parameters ofea QFT, that are not directly observable.

In what sense, in k-Minkowski, we promote x# to noncommuting operators?

We do not intend to interpret &/ as observables. They remain as
unobservable as they were in ordinary QFT. Instead, we want to replace
the commutative algebra of functions on Minkowski space with a
noncommutative algebra, and perform a path integral on the space of
noncommutative functions.

| will now show that one can define a noncommutative QFT in terms of
N-point functions, admitting the same interpretational framework as
commutative QFT.

Page 10/28



Pirsa: 21060088

Generalized <-Minkowski algebra

N LN " st A
[2#, 2] = —(vH&Y —v2H), w=20,....d, (") = 2+,
K

v* e R4TL, [k] = length~ ! scale.

Most-studied (“timelike”) case: v = §*§
&H € A = coordinate algebra = ‘noncommutative functions’ = scalar fields.

7 65 = é(v“aﬁ” — v”2#) break Lorentz (Poincaré) invariance, right?
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Poincaré invariance: “Doubly Special Relativity

Wrong. The standard Poincaré transformation law:
P = A;lyiu + CALN,

where A#, and a” are assumed to be
noncommutative operators which commute with £#:

O,

[Ary, 3] = 0 = [a",2"],
will leave the x-Minkowski commutators invariant:
[@/;1,7 j:/u] — i(v“’:i:”’ _ vuaA}/ﬂ) :
K
if the Lorentz matrices and translation vector satisfy:
(Ar, A% =0, [a%,a"] == (" — "),
(A, a0] = [(Ra v — o) A% 4 (A5 — g05) P9

A;LQAuﬁga,d — g;w7 ApHAUVng = Ui

for an arbitrary real invertible c-number metric g,,,,.
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If g, is Lorentzian, A%, and @* close an algebra which is a noncommutative
deformation of the algebra of functions on the Poincaré group.

Doubly Special Relativity principle: just like Special Relativity deforms
Galilean Relativity by introducing an observer-independent velocity scale,
there could be a regime of Quantum Gravity in which inertial observers are
related by transformation laws that deform those of SR, by introducing a
further invariant scale (a length scale).

0,

x~ ! here plays the role of observer-independent length scale:

Alice Bob

[CIAJH, j:z/] - é(v“@” _ qujp) ’ [;ﬁ/ll’ j:/u] - %(1)“:;3/” _ qu:/y)
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Field theory on x-Minkowski?

A 5 noncommutative deformation of the algebra of functions on spacetime

e
algebra of scalar fields ¢(x)y () # ¥ (x)d(x).

Long and interesting history of studies, e.g. (nonexhaustive list!):

Pirsa: 21060088 Page 14/28



Pirsa: 21060088

Many proposals for formulating a QF T on x-Minkowski.
None 100 % satisfactory so far.

A popular way to get physical predictions without having to discuss the basic
ontology and the interpretational framework is to use a nonlocal star product
between commutative fields:

¢(-T) * lb(t%) = Z Ml -HnyV1. Vm an,qS(x) 8"”/1p(g;)

nom o, OxHl...0xHnOx¥l ... JxVm

which realizes a representation of the commutation relations:
)
oMk ¥ — ¥ kol = _(U;zwl/ _ UUCL‘#) )
K

Then a k-Poincaré covariant action is written with the help of the star product
as a commutative, but nonlocal field action, e.g.

[ @ [S(Pup(@))  (Pud(@)) = 5m26(2)  6(@) + 2o(@)*]

then N-point functions can be calculated in the standard way, as variational
derivatives of the commutative generating functional for this nonlocal QFT.
14
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| have several issues with this:

The star product is not unique.

What happens to noncommutative, x-Poincaré covariance?

Fields are expanded in a basis of ordered plane waves, the ordering
choice should be arbitrary and the physical predictions independent of
the ordering choice. Are they?

Related to the above: is there invariance under change of coordinate sys-
tem in momentum space (see below)?
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“Multilocal functions” and braiding

To properly define N-point functions, we need to
algebrize the concept of a function of multiple variables.

Commutative case:
C (M) = commutative algebra of functions on M.
C (M) ® C(M) = algebra of functions of two points.

C(M) ® C(M) is generated by the coordinate functions
96‘11 =zt 1, xg =1®axz"* andtheidentity 1® 1.

Given a nonabelian algebra like A, there is a canonical
algebra structure on the tensor product A ® A:

TN ) . . AP 1 . .
[@4,84] = Z(ray —0'af),  [ah,a5] = ~(v'as — v"ah),
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“Multilocal functions” and braiding

The tensor product algebra construction might be natural, but it’s not
r-Poincaré covariant. In fact, k-Poincaré-transforming both coordinates:

T = Avag+at,  [A,E0] = [a, &0 =0,

~ ~/ 3 q g
we get that £/, — &/ doesn’t leave the cross-commutators invariant:

[, 2% #0.

In jargon: &4 — :i:g“o'is not a homomorphism for A ® A,

or A® A is not a k-Poincaré-comodule.

...we need to philosophize differently.
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Braided tensor product algebra
O,
This fact is known by mathematicians: in general, tensor product algebras
built from a Hopf-algebra comodule are not comodules themselves

Inspired by Fiore and Wess’ work on a different
noncommutative space, in
we relaxed the cross-commutation rules. It turns out that these:

T 7 . . . .
&Y, 28] =~ [0 @] — " 2h — ¢ gpor” (2] — 23)] .
are x-Poincaré covariant:

21, 5] = [2], 28]

and can be immediately extended to N points:

7
< V] AV Vs v P (AT _ 50
[:Ugvmb] - ; {Uuwa v wb g“ gPU?’p (wa wb)] 0
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We are not prepared yet to consider nonassociative structures,
we therefore impose the Jacobi rule:

(2%, (&7, 221] + [ (22, 25]) + [2€, (24, #]) =

o, 3 Py N7 N - ) ) .
—gagu®v® [pFR(EE — &) i@y — &%) F (&) — £5)

and this is satisfied only if g, v v” = O,
this is the so-called lightlike ~-Minkowski noncommutativity.

Unfortunately, the well-studied v#* = 6 case doesn’t work.

However, we have a nontrivial case to study!
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A quasi-commutative algebra

i A { R R R .
@l &Y) =~ [oh8Y — V&) — g gpor” (2] — 2F)] .
K

the coordinate differences close an Abelian subalgebra:

NI e NN N
O0X,, = & — Ty, [02,,,02,,] = 0.

All the noncommutativity is concentrated on four
“center-of-mass” degrees of freedom:

1 N
S ~ S A S
mém - N Z w{l ) (/1 — m’éz - a:f:m?
a=1
M 9 75 I ny A0 Yl S sV s LV 2V
[£cm: Gal = i (9" gpov”Gg — v"GL) [cm, Tem] = i (Ul el —

[9a. 951 = 0.
One can write an explicit representation of this algebra
in terms of Lorentz matrices and dilatation operators.

!
Lcm

20

),
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A case of serendipity

N-point functions are, in the commutative case, Poincaré-invariant
distributions which admit a Fourier representation.

A natural noncommutative version of an N-point function is a product of
exponentials:

fer) = / el atEN Tk :@eik’}@q o R EY :

where : : represents an ordering prescription for the noncommutative
coordinates.

A moderately lengthy proof shows that «-Poincaré invariance
implies that f (&%) depends only on g/, and not on &4,,,.

Therefore all N -point functions are commutative!
This hugely simplifies the interpretational framework of the theory: it is

just a complicated way to calculate perfectly ordinary N-point functions.
21
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Features of (1+1D) ~-deformed field theory with v#v"g,,, = 0

" A g A= o1 AT
1-point ordered plane waves €,[k,] = eth-Ta gih+da L, c R
form a Lie group (SB(2) in 2D, AN (3) in 4D).

Different ordering prescriptions correspond to different coordinate systems on
the “momentum space” group manifold (i.e. different group factorizations):
e
ejqfi;_‘_iq{—iu —e 2q+ “ eiq+§3+’
The group manifold is a half Minkowski space:
O,
} s +/, the mass Casimir is deformed in certain coordinates,
/// / butit can always be made standard (p*p,, = m?) with
[ @ general momentum-space coordinate change. For-
 \\ - get about “deformed dispersion relations” here, it’s not
physical.

22
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Nonlinear action of the x-Poincaré group on momentum space:

2 ik_@, ik A/+ = R ST = B
e;[k] — oth—Za iky®a" — ea,[)\(k’,A)]eL]‘—a ell"—a—'—,

Only 2 quadrants are Lorentz-invariant, fortunately including a full mass-shell.

23
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Physics can be defined in a momentum-space-diffeomorphism-invariant way.

Let’s look for a Wightman function that is
independent of the ordering choice, and x-Poincaré-invariant:

Wy (@1 - 82) = [ hy/=g(B)s(C(k) — m?)O(ky) €11K] €311,

Wy (@1 = 2) = [ dPhy/=g(R)S(COR) — mD)O(—ky) €11k E51H

24
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Triviality?

This result reminds of and
cited above: in the canonical noncommutative spacetime, all N-point
functions are undeformed.

Our result, however, holds only for the non-interacting theory. One could
conjecture that a interacting theory would have x-dependent corrections to
the N-point functions from interaction vertices.

O,

The issue is under investigation.

26
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