Title: Three waysto classicalize (nearly) any probabilistic theory
Speakers: Alexander Wilce

Series. Quantum Foundations

Date: June 11, 2021 - 2:00 PM

URL.: http://pirsa.org/21060086

Abstract: It is commonplace that quantum theory can be viewed as a *"non-classical” probability calculus. This observation has inspired the study of
more general non-classical probabilistic theories modeled on QM, the so-called generalized probabilistic theories or GPTs. However, the boundary
between these putatively non-classical probabilistic theories and classical probability theory is somewhat blurry, and perhaps even conventional.
This is because, as is well known, any probabilistic model can be understood in classical terms if we are willing to embrace some form of
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A commonplace:

Quantum mechanics is a non-classical probability theory

This suggests the study of more general non-classical probabilistic
theories (GPTs) modeled on QM, which has been very fruitful.

However, there two caveats:

a) A probabilistic theory isn't a probability theory. (The latter
y W 4
can be viewed as the study of probabilistic theories.)

(b) The boundary between “classical” and “non-classical”
probabilistic theories is a bit blurry, perhaps even conventional.
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In this talk, I'll focus on (b), by considering three ways of
interpreting a GPT in terms of classical PT. In descending order of
familiarity:

(1) A general Beltrametti-Bugajski style representation;
(2) A representation involving the “semi-classical cover"”;

(3) A representation of probabilistic models with enough
symmetry in terms of a classical probabilistic structure,
with the non-classicality is moved into the dynamics
(somewhat in the spirit of Bohmian mechanics).
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In this talk, I'll focus on (b), by considering three ways of
interpreting a GPT in terms of classical PT. In descending order of
familiarity:

(1) A general Beltrametti-Bugajski style representation;
(2) A representation involving the “semi-classical cover”;

(3) A representation of probabilistic models with enough
symmetry in terms of a classical probabilistic structure,
with the non-classicality is moved into the dynamics
(somewhat in the spirit of Bohmian mechanics).

(http://philsci-archive.pitt.edu/16721/ =: AWQ020)
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Outline:
|. Background

o Probabilistic models

e Probabilistic theories (= categories of probabilistic models)
e Classical probability theory and classical embeddings

Il. Classical Extensions
I1l. Semiclassical Extensions
V. Dynamical classical representations
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Outline:
|. Background

e Probabilistic models
e Probabilistic theories (= categories of probabilistic models)
e Classical prbbability theory and classical embeddings

Il. Classical Extensions

I1l. Semiclassical Extensions

V. Dynamical classical representations
V. Composite systems (if time)
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|. Background
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In discrete classical probability theory, a probabilistic model is a
pair (E, p):
e E an outcome-set,

e /. a probability weight on E.

Obvious generalization: Allow both E and u to vary. Start with E:

Definition: A test space is a collection M = {E F,...} of
(outcome-sets of ) possible experiments, tests, etc.

e Mathematically, M is just a hypergraph.

e |dea due to C. H. Randall (1928-1987) and D. J. Foulis
(1930-2018). Also called contextuality scenarios in some more

recent literature.
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Let X :=|JM, i.e., space of all outcomes.
Definition: A probability weight on M.:

a: X —[0,1] with Za(x):1VEEM.
xcE

Write Pr(M) for the set of all these.

e Tests can overlap, but probability weights are non-contextual.

e Pr(M) C [0,1]* is convex, and closed (so, compact) if all
tests are finite.

e More structure can be added as needed.
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So we have a natural generalization of the received idea of a
probabilistic model:

Definition: A probabilistic model A is a pair (M(A),Q(A)) where
M(A) is a test space and ) # Q(A) C Pr(M(A)).

Q(A) is the state space, and elements of 2(A) are the states, of A.

L3

e |dea goes back at least to Mackey (1957!), with M(A) consisting
of two-outcome tests ( “questions”).

e Also considered by Foulis-Randall under the much cooler name
“stochastic entity”
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Toy Example

Q X = nodes; M = sides
O O
Sample probability weights:
1
0 2
0 1 0 0
- > 1 O 1
1 0 0 5 0 5

Note: Both of these are pure!

Page 12/52
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Real Examples

Classical models:

(i) Simple: A= ({E}, A(E)) — one test, all probability

(i)

weights.

Kolmogrovian: if S is a measurable space, let D(S) =
set of all finite measurable partitions of S Every
probability weight 1 € A(S) defines a probability weight
on D(S), so (D(S),A(S)) is a probabilistic model.

3
To simplify notation, let's write D(S) for this entire
model.
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Real Examples

A simple quantum model: For a (f.d.) Hilbert space H, let
o M(H) = set of ONBs for H; X(H) = unit sphere.
e Q(H) = all probability weights states of the form
alx) = (Wx,x),

W a density operator on H
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Models from convex sets

Let K be a convex set (an abstract state-space). An effect on K is
an affine functional a: K — [0,1]. The unit effect is ux : o +— 1
Vo € K. Write [0, uk] for the set of all effects.

Definition: A (discrete) observable over K is a finitely-indexed
collection {a;}ics of nonzero effects with » ;_, a;i = uk.

L3
We can organize observables into a test space. Let

(a) X°(K) :=N x (0, uk],

(b) MP°(K) = graphs of observables indexed by finite / C N.
For a € K, define a°(i,a) = a(a): we then have a model
(MP°(K), K°) with K° ~ K.

I'll use M°(K) to stand for this entire model.
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Probabilistic Theories

An event of A is a subset of a test E € M(A). Write £(A) for the

set of events. If o € Q(A) and a € £(A), let a(a) = >, cq (X).

Definition (cf FR 1978): An interpretation from A to B is a

mapping ¢ : X(A) — £(B) such that

(a) for every E € M(A), {&(x)|x € E} is pairwise disjoint
and U, cg 6(x) € M(B);

(b) for every B € Q(B), ¢*(3)(x) = B(¢(x)) defines a state
in Q(A).

In other words: ¢ maps tests of A to possibly coarse-grained
versions of tests in B, in such a way that states on B pull back to
states on A.
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Interpretations A qzs> B s C compose according to

(Wod)x) = |J »y)

YEP(x)

This gives us a category, Int. Any subcategory of Int is a
probabilistic theory.
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Examples:

(a) Let S and T be measuable spaces and f : S — T, measurable.

Let ¢ : D(T) — D(S) by

[ ) )
oo ={ " L

(b) If K1, K, are compact convex sets and f : K — K> an affine
mapping. Define ¢ : M°(K;) = M°(K7) by

{(i,bof)}  bof#0
Pl = {@ bof=0
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Classical Embeddings

If |¢(x)| =1 for every x € X(A), then we can regard an
interpretation ¢ : A — B as a mapping ¢ : X(A) — X(B). Call
such an interpretation an embedding iff this is injective and the
mapping ¢* : Q(B) — Q(A) is surjective.

When does an abstract model A admit a classical embedding
b A~ (D(S),A(5))?

Definition
e o € Pr(M(A)) is dispersion-free (DF) iff ce(x) € {0, 1} for
every x € X(A). o

e Let S(A) stand for the set of all DF probability weights on
M(A). A'is unitally dispersion-free (UDF) iff
(i) Vx € X(A), 36 € S(A) with §(x) =1,
(ii) Q(A) is contained in the closed convex hull of S(A).

Page 19/52
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Versions of the following can be found in many places in the
quantum-logical literature.

Theorem: A model admits a classical embedding iff it's UDF. In
that case, one can take S = S(A).

Not enough for M(A) to have a lot of dispersion-free probability
weights: all states e € Q2(A) must be averages of these.

Example: The %, %?% state on the Triangle is pure, but not DF. So

this state blocks any classical embedding.

If M(A) has no DF probability weights, then a classical
embedding is impossible regardless of how we choose Q(A). This is

the case for quantum models: Gleason’s Theorem tells us that
M(H) has no DF states for dim(H) > 2.
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|l. Classical Extensions
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An embedding isn’t the only way of explaining one mathematical
object in terms of another. One can also represent one object as a
quotient of another, more familiar object.

Example: a square can arise as the projection of a tetrahedron (a
4-simplex) on a plane.
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Getting this kind of thing to works in infinite dimensional
generality is the object of Choquet Theory.

If K is a compact convex subset of a locally convex TVS V, let
Ap(K M be the set of Baire probability measures on K (an

infinite-dimensional simplex).

For each u € Ay(K), the barycenter of i, it € V**, is defined by

u(f) = /de#

for all functionals f € V*.
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Getting this kind of thing to works in infinite dimensional
generality is the object of Choquet Theory.

If K is a compact convex subset of a locally convex TVS V, let
Ap(K) be the set of Baire probability measures on K (an

infinite-dimensional simplex).
For each u € Ay(K), the barycenter of i, it € V**, is defined by
u(f) = f fdp
K
for all functionals f € V*.

Proposition: (see Alfsen, 1971, 1.2.1) u € K. Hence, ju+— i is an
affine surjection Ay(K) — K.
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Definition: A classical extension of a probabilistic model A with
convex state space €2(A) is an affine surjection

q: A(S) — Q(A).
for some measurable space S.

This makes no reference to M(A). But the surjection g dualizes to

g X(A) = [0, ua] - a (1) = alw)(x).

This is an interpretation from A into M°(A(S)), and an
embedding as long as 2(A) separates outcomes.

Effects on A(S) are “unsharp” (or fuzzy, or noisy) indicator
function, so tests in M°(A(S)) are "unsharp” versions partitions.
We can regard g* as an “unsharp” classical embedding.
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As we've just seen, every probabilistic model with Q(A) compact

and convex has a canonical classical extension obtained by taking
S = Q(A) (with its Baire field).

This construction is even functorial:
A (M(Ao(2(A)))

is the object part of a covariant functor from probabilistic models
to unsharp Kolmogorovian models. (€2 and M? are contravariant,
A, is covariant.)
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I11. Semiclassical Covers
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We can in some respects do better than this, with much less work.
If E € M(A), let E={(x,E)|x € E} C X x M, and set

M={E|EeM}

The outcome-set of M is X = {(x,E) | x€ E € M}. Every
a € Q(A) defines a probability weight a(x, E) = a(x), so we have
a model

A = (M(A),Q(A)),
the semi-classical cover of A. Note there's an outcome-preserving
Interpretation B
T:A— A w(x, E)=x.
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Ais UDF, and so, has a classical embedding. We can therefore
represent A as a quotient of a sub-model of a (genuine, not
“fuzzy” ) classical model.

The semiclassical cover is functorial: an interpretation ¢ : A — B
yields an interpretation qzb A — B, accoring to

d(x,E) = { (v,8(E)) | y € ¢(x) }.

So we have a covariant functor — on objects, A — D(S(A)) —
from models to (sharp) Kolmogorovian models.

A

Page 29/52



Summarizing:

A— D(S)

(Sharp) classical embedding (rarely exists)

D°(L0(9)) A— D(S(A)
h
A A
Unsharp classical embedding Semiclassical extension
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Now consider probabilistic models A equipped with a dynamical
group G(A) of positive, outcome-preserving, invertible
intepretations A — A. Equivalently: of bijection g : X(A) — X(A)
acting on

(a) G(A) is a group of bijections g : X(A) — X(A) with

(b) M(A) invariant under E — g(E),
(c) ©Q(A) invariant under @ — o g

Call A, so equipped, a dynamical probabilistic model.
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Definition: A classical extension of a probabilistic model A with
convex state space Q(A) is an affine surjection

q:A(S) — Q(A).
for some measurable space S.

This makes no reference to M(A). But the surjection g dualizes to

q": X(A) = [0,uas)] a7 () (1) = a(p)(x).

This is an interpretation from A into M°(A(S)), and an
embedding as long as 2(A) separates outcomes.

Effects on A(S) are “unsharp” (or fuzzy, or noisy) indicator
function, so tests in M°(A(S)) are "unsharp” versions partitions.
We can regard g* as an “unsharp” classical embedding.
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I11. Semiclassical Covers
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Ais UDF, and so, has a classical embedding. We can therefore
represent A as a quotient of a sub-model of a (genuine, not
“fuzzy" ) classical model.

The semiclassical cover is functorial: an interpretation ¢ : A — B
yields an interpretation ¢ : A — B, accoring to

o~

o(x,E) = { (y,#(E)) | y € o(x) }.

So we have a covariant functor — on objects, A — D(S(A)) —
from models to (sharp) Kolmogorovian models.
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Now consider probabilistic models A equipped with a dynamical
group G(A) of positive, outcome-preserving, invertible
intepretations A — A. Equivalently: of bijection g : X(A) — X(A)
acting on

(a) G(A) is a group of bijections g : X(A) — X(A) with

(b) M(A) invariant under E — g(E),
(c) ©Q(A) invariant under @« — cxo g

Call A, so equipped, a dynamical probabilistic model.
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Where G(A) is a Lie group, a reversible dynamics for A is a choice
of a continuous one-parameter group g € Hom(R, G(A)). tracking
the system’s evolution over time: if a, is the state at t = 0,
gi(a) = avo g_; is the state after t units of time.

3

The assumption that g;,s = g:gs encodes a Markovian assumption
about the dynamics: a system’s later state depends only on its
initial state and the amount of time elapsed, rather than on the
system’s entire history.
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Definition: A dynamical model A is symmetric iff G(A) acts
transitively on the set M(A) of tests, and the stabilizer, G(A)g,
of a (so, of any) test E € M acts transitively on E.

The quantum probabilistic model A(H) is symmetric w.r.t.
G(A(H)) =U(H), the unitary group of H.

k
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Now consider a single classical apparatus/experiment with
outcome-set E, coupled probabilistically to a physical system
having a state-space €2, with dynamics given by a Lie group
Suppose G (acting on the right). The coupling is given by a
function

p:QAxE—[0,1], ) pla,x)=1VaeQ (1)
xekE

giving the probability p(a, x) to obtain outcome x € E with the
system in state a € 2.
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Now consider a single classical apparatus/experiment with
outcome-set E, coupled probabilistically to a physical system
having a state-space €2, with dynamics given by a Lie group
Suppose G (acting on the right). The coupling is given by a
function

p:AxE—[0,1], ) pla,x)=1VaeQ (1)
xekE

giving the probability p(a, x) to obtain outcome x € E with the
system in state a € 2.

(Note: p is just a discrete Markov kernel. Nothing “nonclassical”
here.)

R
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Two further assumptions:
(2) €2 separates outcomes in E:

(Va € Q pla,x) = pla,y)) = x=y. (2)

(If not, factor out the obvious equivalence relation on E.)
(3) E and G together separate states:

(Vg € G,Vx € E p(ag,x) =p(Bg.x)) = a=4 (3)
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Each state o € €2 gives us mappings
a:G—A(E) and a: G x E — [0,1]
defined by

a(g)(x) = a(g, x) == p(ag,x).

The first is a random probability weight on G, the second, a
discrete Markov kernel on G x E. Take your pick: either way, call
a the dynamical state associated with o € Q.

The state-separation assumption (3) tells us that o — @ injective,
so we can identify a with a.
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Say that g € G implements a permutation ¢ : E — E iff
plag,x) = p(a,ox) Va € Q,x € E. By (2), each g € G
Implements at most one o = Og-

Lemma: The set H of all g € G implementing permutations of E
is a subgroup of G and o : H — Sym(E), g — o4, is a
homomorphism.

So E carries a natural H action. To simplify the notation, write hx
for opx (h € H and x € E).

It's natural to consider cases in which E is transitive as an H-set:
for every x,y € E, dh € H with hx = y. This motivates the
following
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Definition: A dynamical classical model (DCM) consists of
(a) Groups H < G,
(b) A right G-set Q2 and a transitive left H-set E,

(c) A Markov kernel p : Q x E — [0, 1] satisfying conditions
(2) and (3) above, such that

p(a, hx) = p(ah,x)

forall e 2, he Hand x € E.
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So far, nothing we've done takes us outside the range of classical
probability theory.

Nevertheless, any symmetric model — including, e.g., any
finite-dimensional Quantum model — gives an example of this
scenario: Choose a test E € M(A), and let g(a, x) = a(x) and
a(g)(x) = a(gx) for all & € Q(A) and any x € E.

Conversely, given a DCM, one can always construct a symmetric
probabilistic model with dynamical group G, containing E as a
test. (For the recipe, see the last slide).

So one can convert a DCM into a symmetric probabilistic model
(in various ways, parametrized by K).

It would seem that there's little mathematical difference between a
“non-classical” ) symmetric probabilistic model A and an essentially
“classical” DCM. Can this be right?
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Given a state a € 2 plus the system'’s dynamics, specified by a
choice of one-parameter group g : R — G, we have a path

a: = o(gt)
in A(E). Dynamical states specify how probabilities change over
time, given any possible aynamics.

But these paths are generally not governed by flows: there's no
one-parameter group of affine mappings 7° : A(E) — A(E) such
that s = T°(a:). The observed evolution of probabilities on E
is not Markov.

In this respect, it is the dynamical, rather than the probabilistic,
structure of the DCM that can be regarded as non-classical.
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V. Composite Systems
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So, in view of all this — is quantum mechanics itself essentially
classical?

Standard response: No — because nonlocality! entanglement!

So let's briefly consider how the three classical representations
we've discussed play with composition.
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Without going into details, there's a standard notion of a
nonsignaling composite, AB, of probabilistic models A and B. This

needn’t be locally tomographic.
3

e In general, Q(AB) will contain entangled or (maybe better to
say) non-local states: states that aren’t mixtures of product
states.

e Because composites can be non-locally tomographic, this can
happen even if the models A and B are classical.

e [ he classical and semiclassical extensions are “non-local” in
just this way.
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Without going into details, there's a standard notion of a
nonsignaling composite, AB, of probabilistic models A and B. This
needn’t be locally tomographic.

e In general, Q(AB) will contain entangled or (maybe better to
say) non-local states: states that aren’t mixtures of product
states.

e Because composites can be non-locally tomographic, this can
happen even if the models A and B are classical.

e [ he classical and semiclassical extensions are “non-local” in
just this way.

Moral: Passing from a “non-classical” probabilistic theory to its
classical or semiclassical extension shifts the “non-classicality”
from the probabilistic structure to the physics.
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Composites of DCMs are more interesting. One can also write
down a plausible definition for a composite AB of DCMs AB (see
AW?2020). One assumption is that

E(AB) = E(A) x E(B).

In general, Q(AB) will contain entangled states.

But how do we detect them? AB has only the single, classical,
measurement E(A) x E(B).

We can reinterpret A, B and C into symmetric probabilistic models
and take (ordinary) composites of these, obtaining enough tests to
do the job. But maybe there's a more direct story about the
dynamics?
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Further Questions and Projects

(a) Classical extensions are preparation contextual. Semiclassical
extensions are measurement contextual. /n what way is the
DCM representation contextual?

(b) If A= (£2, G,E) is a CDM with G a Lie group, how does an
element of g, the Lie algebra of G, show up as an
“observable”?

(c) Can we extend the definition of a DCM to replace the discrete
measurement E with D(S) for a measurable space S7

(d) Is the Bohm interpretation of QM just a (suitably extended)
DCM representation? .
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Appendix: The ReLT,;,E:"'“”

Proposition: Given a DCM as above, let x, € E and define

K ={g € Glp(ag,x) = pla, %)}

For any subgroup K < IC with K N H = H,, there's a well-defined
H-equivariant injection ¢ : E — X := G/K such that

(a) M ={go(E)| g€ G }is a fully G-symmetric test space,
(b) For every a € Q,

[a](xg) = (g, %)

is a well-defined probability weight on M,
(c) The mapping « — [a] is a G-equivariant affine injection.

Pirsa: 21060086 Page 52/52



