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using double causality. & nbsp;! also propose the idea of a conditional frame of reference. & nbsp;We can transform from the time symmetric frame
of reference to aforward or a backward frame of reference. & nbsp; Thistalk isbased on arXiv:2104.00071.
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Time Symmetry in Operational Theories

Lucien Hardy

Perimeter Institute, Waterloo, Ontario, Canada

Talk based on arXiv:2104.00071
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Standard Operational Quantum Theory

In standard operational quantum theory operations are
» Completely positive.

NIA

b
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B
|
a

time symmetric

» Trace non-increasing (Pavia causality).
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time asymmetric
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This is odd because. ..

prob(z|y) and, as such, knows nothing of time.
symmetric.

1. Abstract probability theory concerns calculation of such objects as

2. Quantum Theory, at the level of the Schrodinger equation, is time
h

3. The Quantum Theory of measurement can be treated very simply
example).

without reference to the second law (the von Neumann model for
We will see how to fix this.
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Operations and Circuits
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Standard notion of an operation

outputs

.

—— outcome

setting ——

2

inputs
Settings are controlled by knobs, etc. These are classical.

Outcomes correspond to pointer readings, etc. These are classical.

Inputs and outputs are for the physical systems (e.g. Quantum Systems).
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Standard notion of an operation

outputs

—— outcome

L

e

inputs
Settings are available before and after.

setting ——

Qutcomes are available afterwards but not before.
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Time symmetric operation

outputs

.

{1y

LB
Inputs
Now have incomes as well as outcomes.

setting ——

iIncome ——

——— outcome

——— setting

Incomes are available before but not after. These are classical.
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Time symmetric operation

outputs

income —— A. P>— outcome

inputs

Since we will be primarily concerned with incomes and outcomes we will
take the setting arrow to be implicit.
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Time symmetric operation

a\ /c
% A —
a b a
classical and take values

We use x, y, etc. to denote income/outcome (pointer) types. They are
= il A 0= LBl
systems.

y
We use a, b, etc. to denote the physical system types. Could be quantum
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Circuits

We can wire operations together

c =2{EH2{q
k
a B
3
XX

A

When there are no open wires we have a circuit

Interested in the joint probability p(z,y, 2).

This is joint probability p(incomes, outcomes).
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Points of view

Consider the following points of view

> Time symmetric point of view concerns p(incomes, outcomes).
» Time forward point of view concerns p(outcomes|incomes).
» Time backward point of view concerns p(incomes|outcomes).
The standard operational framework is in the time forward point of view.
We wish to work in the time symmetric point of view. Given answers in
one point of view, can convert to others.

s

answer for

In the time symmetric point of view, we demand that we get the same

p(incomes, outcomes)
whether we do the calculation forward or backwards in time.
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Definition of time symmetric theory

We will say an operational theory is time symmetric if,
1. Every allowed operation, A, can be mapped to an allowed “time
reversed” operation, A. For example,
\J \ |/
time
A — g ——F F—
reverse
a

x
b a

2. Given any circuit, E, we can obtain the time reversed circuit, E, by
inverting the graph replacing operations with their time reversed
counterparts. We require that prob(E) = prob(E).
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For example,

f e |Epitn | f
prob a B = prob
p
| EFER A ) \

The circuit on the right is the time reverse of the circuit on the left and
has the same probability.

This means that, for every process described in the forward direction,
there is a corresponding process described in the backwards direction.
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Contents of talk going forward

1. Double properties for a simple classical situation
r 2. Physicality:

» complete positivity
» double causality

3. Quantum Theory:

> operator tensors and physicality
> gauge parameters

» time symmetric extension theorem
» Time reverse of teleportation
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Previous work

On time symmetry - small sample.
1. Aharonov, Bergmann, Lebowitz 1964.
2. Chiribella, D'Ariano, Perinoti 2010 (the Pavia causality condition).

3. Operational formulation of time reversal in quantum theory.
Oreshkov, Cerf. arxiv:1507.07745

4. Quantum Information and the arrow of time. Biagio, Dona, Rovelli.
arXiv:2010.05734

5. Quantum operations with indefinite time direction. Chiribella and
Liu, arXiv:2012.03859

6. Symmetries of quantum evolutions, Chiribella. Aurell, Zyczkowski
arXiv:2101.04962

L
Also relevant to this work are the process theory and GPT approaches.
My paper makes much use of the pictorial approach of Coecke, Selinger,
etc (see book by Coecke and Kissinger).
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Double properties for simple
classical situation
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Simple classical situation

¥ D —w
b
C Yy \
X— C —w X — — W
= M
X — —— X
hx B X S Ly
c
a
XxX— A —Y

We have collapsed out the physical systems.

inside.

M is a classical box - though with physics (maybe quantum) hidden
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We can write this as

y — L w
X — S—
M » u M v
X — L X
X — —y

where u = xxxy and v = yxww.

This simple classical situation holds the key to understanding time
symmetry in operational theories.
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Double distribution uniqueness

u T T s v
Forwards gives 4

Pforward (’LL, U) = pE(u)pM (’U"LL)

Backwards gives

pbackward(ua ’U) = pF(U)pM (’LL|’U)
These probabilities must be equal

pe(u)pm(v|u) = pr(v)pm(ulv)
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Double distribution uniqueness

MV’UV U’U,UMV‘UV
We have
pe(uw)pm(vlu) = pr(v)pm(ulv)
Dividing gives

per(w)pm (vfw) = per(v)pm(ulv)

pe(u) _ pr(v)

per(u)  pr(v)
Since probabilities add to 1, we obtain

PE("é) =per(u) and  pr(v) = prr(v)
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Double distribution uniqueness

MV’UV UUUMV‘UV
We have
pe(uw)pm(vlu) = pr(v)pm(ulv)
Dividing gives

pe(u)pm(vlu) = per(v)pm(ulv)

pe(u) _ pr(v)

per(u)  pr(v)
Since probabilities add to 1, we obtain

pe(u) = per(u)

i e =il
This is true unless py(u|v) =0 or py(v|u) =0
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Double distribution uniqueness

u u
Forwards gives

M

Vv V

Backwards gives

p;omrard (uﬂ U) > pE’('U:)pM (U|u’)

p,backward (U., U) = PF (U)pM (’U,I’U)
By the circuit probability assumption they must be equal

per(u)pm(vfw) = pe(v)pm(ulv)
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Double distribution uniqueness

MV’UV UUUMV‘UV
We have
pe(uw)pm(vlu) = pr(v)pm(ulv)
Dividing gives

pe(u)pm(vlu) = per(v)pm(ulv)

pe(u) _ pr(v)

per(u)  pr(v)
Since probabilities add to 1, we obtain

pe(u) = per(u)

i e =il
This is true unless py(u|v) =0 or py(v|u) =0
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Double flatness

One way to achieve double distribution uniqueness is

» consider only flat distributions, and

R

) =

p—
» impose double flatness.

Double flatness holds in Quantum Theory.

Double flatness is deeply related to double causality.
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The first point means that, in the time symmetric point of view, we
consider circuits of the form

C ZZ
a
a B ﬁ
b b
.X.X

A

This is necessary so that we get the same probability whether we do the
calculation forward or backward in time.

o
Pirsa: 21060084

Page 26/56



Double summation

Forward summation

3 prob (E

o)
Backward summation

%:prob(

M

(3)

Double summation is equivalent to double flatness.
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Physicality

We wish to impose physicality conditions which guarantee that

» Double summation (equivalently double flatness). Motivated by
We have

» Complete positivity that probabilities for circuits are non-negative.
double distribution uniqueness and causality considerations

» Complete positivity <= T-positivity

» Double summation <= double causality
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Forward spanning property

preparation

A theory has the forward spanning property if an arbitrary system

a

|,

A

.W.W

S.S.

is equivalent to a weighted sum of income only preparations

a

E

where the weights are real numbers (can be negative).

(5)

¢
Pirsa: 21060084

Page 29/56



Forward purity property

a

A

A theory has the forward purity property if an arbitrary system preparation

.W.W

S.S.

is equivalent to a weighted sum of income only preparations

a

s
E

where the weights are non-negative real numbers.

(7)
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Backward spanning property

.Z.Z

A theory has the backward spanning property if an arbitrary system result
B

I'.I'.

a

is equivalent to a weighted sum of outcome only results

(8)

VR

where the weights are real numbers (can be negative).
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A theory has the double spanning property if it has both the forward and
backward spanning properties. We use it to obtain double causality.

A theory has the double purity property if it has both the forward and
backward purity properties. We use it to obtain T-positivity.

double purity = double spanning

Quantum Theory has these double properties.
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lgnore preparation and results

An operation having only an input (no output, no incomes, no outcomes)

a
is called an ignore result.

Similahrly, an operation having only an output

(13)

a

L

is called an ignore preparation.

spanning.

(14)
Can prove the ignore preparation and result are unique from double

¢
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Proof that ignore preparations is unique

a general system preparation.

The most general circuit containing the ignore result is where we send in

.W.W

S.S.

By double spanning have equivalence of | and I’ if
prob

(15)

a

.X.X

II
= prob
A

a
E X 71X
This is true by backwards flatness.

(16)
A
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Double causality

Double causality theorem. It follows from double flatness and double
spanning that a general operation,

s

b

|
x— B
|

a

satisfies the following two conditions
Forward causality Backwards causality

b % [1]
R B [RH-

b

: —{e PR/ = IR
h : :
and, furthermore, if these conditions hold for all the operations

comprising a circuit, then the double summation conditions hold for that
circuit.
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x— B |R]

x—BLE i@m

B FR]
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Double Z flatness

F
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“signalling” possibilities

no | By application of forward flat-

[ ness.
no | By application of backward
o flatness.
no | By application of double Z
T flatness.
yes | Double maximality is example.
0> «&F>» «2>» <> E
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Double causality in action
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Double causality in action
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Double causality in action
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Operator Tensors

Operator tensors can be represented diagrammatically

(17)

we can set up a correspondence from operations to operator tensors so
we get the correct probabilities for circuits.
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Physicality in Quantum Theory

The physicality conditions on operator tensors become
T-positivity.

i
0< x— B[~V
& |
a
Double causality.
b b b
= = b
= El el _
. ) x—B -
? ’
These conditions are time symmetric.
O «F»>» «2» «Z» =
Pirsa: 21060084
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Gauge parameters

A curious issue crops up with how we represent operator tensors.
Consider the ignore operators

X

||""-|>
Il

e

>

=

I = —=1«
i T ax/ Ny
X

We are free to choose any real value for ay.

In Standard QT we write o, = \/LF

A time symmetric choice is a, = 1.

There is a similar gauge parameter, 3y, dssociated with the flat
distribution operations R.
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Time symmetric extension theorem

Extension theorem. A/l physical operators can be written in
the (extended) form

b b ff,L
| 2y
X_B_yz U
‘ X w
a XXﬂa

where U is unitary, and X and Y are maximal.
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Time reverse of operator tensor
We can show that time reverse of

b b [ -
| 2y
X — B _y o AB
n
‘ x| w
a 2 Ix] 7] |a
is

—

a [7]1xH
w X
02ﬁ2 4
Y1 8= = | a2 ° Us
| y o B
b ——v]LZ] b
The black dot position indicates the adjoint. B H L KR 14 B
Pirsa: 21060084

Page 47/56



Conditional frames of reference

Consider the circuit

E z z| ¢ Pqpp E
a
al [R] B —{vFR|
b
. XoPEl oA R u E
The probability is p(x,y, z, u, v, w).
O «F> <> <> =
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Conditional frames of reference

In the forward point of view we want

( z z| ¢ | W \
prob al [Rl B —{ZHR
2
\ REEE A J
prob(uvw|zyz) =
( ¢ R )
prob a B YR]
2
| BEa R
N
We know from backwards summation (or backwards flatness) that the
- : 1
denominator is equal to NN, N, L .
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Conditional frame of reference

This means we can write

£l

prob(uvw|zyz) = 2
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Conditional frames of reference

In the forward point of view we want

( ZZ

prob a

P
\ x X A
prob(uvw|zyz) = /

k
prob a
2
\ R R

= A
denominator is equal to

/
We know from backwards summation (or backwards flatness) that the
1

N.N, N,

O

o
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Conditional frames of reference

» We can say that the forward conditional frame of reference is given
by

@x . @xx X@::

which we use to calculate p(outcomes|incomes) directly.

» Similarly, the backward conditional frame of reference is given by

@X — .X.X XE:: _._.XXNx

Which we use to calculate p(incomes|outcomes) directly.

» The time symmetric conditional frame of reference is given by

@@= = R ) = =R

We can use this to calculate p(incomes, outcomes) directly.
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Equivalence to time forward Quantum Theory

If we transform to the forward conditional frame of reference the

physicality constraints become the standard physicality constraints of
(forward) operational quantum theory.

We can also transform to the backward conditional frame of reference
quantum theory.

and get physicality constraints corresponding to backwards operational
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Time reverse experiments

It is fun to consider the time reverse of standard experiments. For

example the standard quantum teleportation protocol looks like this
2
C
/
B

o

2} B

We can write x = aa. We can model C as

e
R]

X

(18)

(19)
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Time reverse of experiments

B (20)
a
a %
B
/
£
Ka/
where
| X
a a
X
C M— = Y (21)
X
a a
|
o = - = E
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Conclusions

e B e i T

How should we interpret these results?
Porting classical information around.

General Theory of Conditional Frames.
Duotensor and Operator Tensor formulations.
Better axioms for Quantum Theory?
Interpretation of no-signalling result.

Will this help with Quantum Gravity?
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