Title: Importance of tidal resonances in EMRIs

Speakers: Priti Gupta

Collection: The 24th Capra meeting on Radiation Reaction in General Relativity

Date: June 11, 2021 - 10:45 AM

URL: http://pirsa.org/21060075

Abstract: In recent work, tidal resonances induced by the tidal field of nearby stars or black holes have been identified as potentially significant in the context of extreme mass-ratio inspirals (EMRIs). These resonances occur when the three orbital frequencies describing the orbit are commensurate. During the resonance, the orbital parameters of the small body experience a â€jump' leading to a shift in the phase of the gravitational waveform. We study how common and important such resonances are over the entire orbital parameter space. We find that a large proportion of inspirals encounter a low-order tidal resonance in the observationally important regime.

Importance of tidal resonances in EMRIs

Priti Gupta (Kyoto U.)

Béatrice Bonga (Radboud U.)

Alvin Chua (Caltech)

Takahiro Tanaka (Kyoto U.)

24th CAPRA meeting - 7-11 June 2021

Pirsa: 21060075 Page 2/18

Tidal perturbers near EMRIs

* Mass segregation + dynamical friction so that more massive black holes sink to the centre [Emami & Lòeb `19]: $20-30\,\mathrm{M}_\odot$ black holes at distance ~ 2 - 5 AU from Sgr A* .

 Observational signature: Constraints from Sstars.

arXiv: 2002.02341, 0810.4674

Pirsa: 21060075 Page 3/18

Tidal perturbers near EMRIs

* Mass segregation + dynamical friction so that more massive black holes sink to the centre [Emami & Loeb `19]: $20-30\,\mathrm{M}_\odot$ black holes at distance ~ 2 - 5 AU from Sgr A* .

 Observational signature: Constraints from Sstars.

arXiv: 2002.02341, 0810.4674

Pirsa: 21060075 Page 4/18

Introducing a perturber...

An EMRI orbit deviates due to the gravitational self-force and the tidal field from nearby stars and BHs.

$$\frac{dq_{i}}{d\tau} = \omega_{i}(\mathbf{J}) + \epsilon g_{i,\text{td}}^{(1)}(\underline{q_{\phi}}, q_{\theta}, q_{r}, \mathbf{J}) + \eta g_{i,\text{sf}}^{(1)}(q_{\theta}, q_{r}, \mathbf{J})
+ \mathcal{O}(\eta^{2}, \epsilon^{2}, \eta \epsilon),
\frac{dJ_{i}}{d\tau} = \epsilon G_{i,\text{td}}^{(1)}(\underline{q_{\phi}}, q_{\theta}, q_{r}, \mathbf{J}) + \eta G_{i,\text{sf}}^{(1)}(q_{\theta}, q_{r}, \mathbf{J})
+ \mathcal{O}(\eta^{2}, \epsilon^{2}, \eta \epsilon).$$

$$\eta = \mu/M
\epsilon = \frac{M^{2}M_{s}}{R^{3}}$$

Characterizes the strength of the tidal field produced by the pertuber M_*

Tidal Resonance

Adiabatic approximation — Fourier Domain + Averaging — Tidal Resonance condition

$$\frac{dJ_i}{d\tau} \approx \eta \langle G_{i,\text{sf}}^{(1)}(q_{\theta}, q_r, \mathbf{J}) \rangle + \epsilon \langle G_{i,\text{tide}}^{(1)}(q_{\theta}, q_r, q_{\phi}, \mathbf{J}) \rangle$$

$$G_i^{(1)}(q_{\phi}, q_{\theta}, q_r, \mathbf{J}) = \sum_{m, k, n} G_{i, mkn}^{(1)}(\mathbf{J}) e^{i(\underbrace{mq_{\phi} + kq_{\theta} + nq_r})}$$
Rapidly oscillating

Rapidly oscillating for most index pairs m,k,n

$$\langle G_{i,\text{tide}}^{(1)}(q_{\theta}, q_r, q_{\phi}, \mathbf{J}) \rangle = G_{i,\text{tide},000}^{(1)}(\mathbf{J})$$

Pirsa: 21060075 Page 6/18

Tidal Resonance

Adiabatic approximation — Fourier Domain + Averaging — Tidal Resonance condition

$$\frac{dJ_i}{d\tau} \approx \eta \langle G_{i,\text{sf}}^{(1)}(q_{\theta}, q_r, \mathbf{J}) \rangle + \epsilon \langle G_{i,\text{tide}}^{(1)}(q_{\theta}, q_r, q_{\phi}, \mathbf{J}) \rangle$$

$$G_i^{(1)}(q_{\phi}, q_{\theta}, q_r, \mathbf{J}) = \sum_{m, k, n} G_{i, mkn}^{(1)}(\mathbf{J}) e^{i(\underbrace{mq_{\phi} + kq_{\theta} + nq_r})}$$
Rapidly oscillating

Rapidly oscillating for most index pairs m,k,n

$$\langle G_{i,\mathrm{tide}}^{(1)}(q_{\theta},q_{r},q_{\phi},\mathbf{J})\rangle = G_{i,\mathrm{tide},000}^{(1)}(\mathbf{J}) + G_{\mathrm{tide},\mathrm{nkm}}^{(1)}(\mathbf{J})$$

$$n\omega_r + k\omega_\theta + m\omega_\phi = 0$$

Tidal resonance condition

Why worry about resonances?

$$\langle G_{i,\text{tide}}^{(1)}(q_{\theta},q_r,q_{\phi},\mathbf{J})\rangle = G_{i,\text{tide},000}^{(1)}(\mathbf{J}) + G_{\text{tide},\text{nkm}}^{(1)}(\mathbf{J})$$

* Kick size is typically small $\mathcal{O}(\epsilon \eta^{-1/2})$ but if encountered early in the inspiral \to significant dephasing $\mathcal{O}(\epsilon \eta^{-3/2})$.

Sample Resonance (n:k:m) = (3:0:-2)

Treatment: Tidally perturbed Kerr

- We need perturbation to the central BH's spacetime due to the tidal field.
- > Metric of tidally perturbed Kerr from [Gonzales + Yunes, 2005] In our work,
- > We choose tidal perturber on the equatorial plane and consider its quadrupolar nature.
- >Assumes tidal field is stationary $T_{td} >> T_{Res}$

Given the metric, we can compute the induced acceleration and corresponding changes in $L_z \ \& \ Q$.

$$a^{\alpha} = -\frac{1}{2} (g_{\text{Kerr}}^{\alpha\beta} + u^{\alpha} u^{\beta}) (2h_{\beta\lambda;\rho} - h_{\lambda\rho;\beta}) u^{\lambda} u^{\rho}$$

Treatment: Tidally perturbed Kerr

- We need perturbation to the central BH's spacetime due to the tidal field.
- > Metric of tidally perturbed Kerr from [Gonzales + Yunes, 2005] In our work,
- > We choose tidal perturber on the equatorial plane and consider its quadrupolar nature.
- >Assumes tidal field is stationary $T_{td} >> T_{Res}$

$$T_{td} < T_{Res}$$

$$m(\omega_{\phi} \pm \Omega_{\phi,td}) + k\omega_{\theta} + n\omega_{r} = 0$$

Given the metric, we can compute the induced acceleration and corresponding changes in $L_z\ \&\ Q$.

$$a^{\alpha} = -\frac{1}{2} (g_{\text{Kerr}}^{\alpha\beta} + u^{\alpha} u^{\beta}) (2h_{\beta\lambda;\rho} - h_{\lambda\rho;\beta}) u^{\lambda} u^{\rho}$$

Resonances during inspiral

- Every inspiral encounters at least one of these resonances during final year of inspiral.
- The time of resonance during the inspiral depends strongly on binary parameters.

$$n\omega_r + k\omega_\theta + m\omega_\phi = 0$$

$$\frac{a_{
m semi}}{M} < 20 \times \left(\frac{M}{4 \times 10^6 M_{\odot}}\right)^{-2/3} \left(\frac{f_{
m LISA}}{10^{-4} {
m Hz}}\right)^{-2/3}.$$

Pirsa: 21060075 Page 11/18

Resonances during inspiral

- Every inspiral encounters at least one of these resonances during final year of inspiral.
- The time of resonance during the inspiral depends strongly on binary parameters.

$$n\omega_r + k\omega_\theta + m\omega_\phi = 0$$

$$\frac{a_{
m semi}}{M} < 20 \times \left(\frac{M}{4 \times 10^6 M_{\odot}}\right)^{-2/3} \left(\frac{f_{
m LISA}}{10^{-4} {
m Hz}}\right)^{-2/3}.$$

Pirsa: 21060075 Page 12/18

Sensitive dependence on phase

Pirsa: 21060075 Page 13/18

Trends followed by tidal resonances

We can see how resonance strength depends on the orbital parameters : $\{a,p,e,x\}$

Pirsa: 21060075 Page 14/18

Trends followed by tidal resonances

Dependence on the orbital inclination: x

Pirsa: 21060075 Page 15/18

Impact on orbital phase of GWs

To estimate the effect, two orbits are evolved and compared

$$\{E,Q,L_z\}
ightarrow \omega_\phi^{(1)}$$
 versus $\{E,Q+\Delta Q,L_z+\Delta L_z\}
ightarrow \omega_\phi^{(2)}$

$$\Delta\Psi := \int_0^{T_{\text{plunge}}} 2\Delta\omega_\phi dt$$

Phase resolution of LISA. $\Delta \psi \sim \mathcal{O}(1)$

Pirsa: 21060075 Page 16/18

Parameter Survey - Prograde Orbits

a = 0.1

a = 0.5

a = 0.9

$$\Delta\Psi'_{nkm} = \Delta\Psi_{nkm} \left(\frac{M'}{M}\right)^{7/2} \left(\frac{\mu'}{\mu}\right)^{-3/2} \left(\frac{M'_{\star}}{M_{\star}}\right) \left(\frac{R'}{R}\right)^{-3}.$$

$$\mu = 30 M_{\odot}, M = 4 * 10^6 M_{\odot}$$

$$M_* \sim 30 M_{\odot} \quad R \sim 250 M$$

$$3\omega_r - 4\omega_{\theta} + 2\omega_{\phi} = 0$$

Summary and Ongoing Work

arXiv: 2104.03422

- Tidal field can change EMRI waveforms significantly depending on the distance and mass of the tidal perturbers ----- hamper detection rate.
- Important to understand such environmental effects when constraining deviations from GR.
- Opportunity to learn about distribution of stellar mass objects that are close to SMBHs.

- Generalise position of tidal perturber and include dynamical tidal field.
- Study mismatching and parameter estimation bias from tidal resonances.

Pirsa: 21060075 Page 18/18