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Abstract: Hyperbolic scattering orbits, able to penetrate deep into the sub-ISCO region even at relatively low energies, provide an excellent probe of
the strong-field regime outside black holes. Self-force calculations of the scatter angle can greatly advance the development of post-Minkowskian
theory and of the EOB model of binary dynamics. We develop a frequency-domain method for calculating the 1st order scalar self-force acting on a
charge moving along a hyperbolic Schwarzschild geodesic, outlining the formulation of the problem, the challenges faced and our attempted

solutions. Particular attention will be paid to issues faced by the usual method of extended homogeneous solutions (EHS) used to circumvent the
Gibbs phenomenon.
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Equations of Motion

The scalar field equation of motion is given by
V. VFd = —4rT (1)

and the scalar charge density T is that of a point particle. We
separate into spherical and Fourier harmonics:

1. i
b = /deF’l,’gmegm(a;ﬁ)e ’Wt,
¢,m

o,
and the equation of motion becomes
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Extended Homogeneous Solutions
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Figure: Cgnvergence of Fourier series for scalar monopole (Schwarzschild
eccentric orbit) [Barack, Ori, Sago 2008]

MEHS: express time domain field &, (t, r) in terms of analytic
functions on either side of the worldline.

rOom(t.r) =07 (£.1)0(r — ry(1)) + &y (£.1)O(ry(t) — 1) (6)
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Extended Homogeneous Solutions (2)

First define the extended homogeneous solutions on r > 2M

l-‘"k‘mw

fmw

Y s W (4 LI (g g
()= v ln) | Mmoo (1)

> I'min

and construct the corresponding time domain functions ¢*(t, r).

Key ideas:
In the source free region r > fmax, Yem(t, r) = ffm(t rl
Yem(t, r) and ¥ (t,r) are analytic throughout r > ry(t).
Hence they must agree throughout r > ry(t).

Make a similar argument for r < r,(t).

[Barack, Ori, Sago 2008]
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Inhomogeneous Solutions in the Unbound Case

For w # 0 variation of parameters again gives us the
inhomogeneous field

'lf"{’(/.mw(r ) — ”L;"‘i’[ _—

(1) /" Vi) Semu(r') dr’

Fmin Wﬁmw f(rl) (8)

00 'l-*"‘f"’g_mw (r/)Sme(r/) dr’

+ Yy (1) /r Wieme f(r')

Marginal convergence of this integral, integrand

oscillations

~J

r
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Sample Spectrum
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Figure: vnp.,(r = 6M) vs frequency for the geodesic E = 1.1, rpyj, = 4M
(illustrated).
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EHS in unbound case: possible solutions

9,

m Could some form of EHS still apply?

m Extension into u =1/r < 0:
Scattering orbit extends to orbit in u < 0 region, periodic in

Mino time.
Need to find a global time coordinate which allows field

equation to be separated into frequency modes before this is
tractable.

m One-sided regularisation using only lower EHS.
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Reconstructing Time Domain Field (Internal)

Imaginary Parts of wua(t, r=6M)

— t=t,(6M)
»« =« Internal EHS (-0.5 = Mw = 1.0)
—— Inhomogeneous (—1.0 = Mw < 1.5)
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Slowly Converging Radial Integrals

m Need to compute radial integrals extending out to oo, want to
truncate at finite radius.

m Slow oscillations/r behaviour of integrand.

m In wave zone integrand can be expanded in 1f‘r and resulting
integrals known analytically.

Puncture integrand to get higher rate of convergence
OR Analytical correction to truncated integral

m Particularly acute for external normalisation integral.

_ /.+m fl‘iﬁlv”(j_mw(r,)sfmw(r,)dr,
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The IR Problem

— |t (r=6M)|/2Mq

9,

l

" Emw P Emw

00 o)y~ NS, (r'\dr'
,;’.EHS—l-(r) — alit (r)/ L(mw(r) [mw(r) 4 (10)

VV(fmwf(r,)

Fmin

Heuristics suggest genuine power law divergence...
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Resolving the IR problem: Windowed EHS

Introduce a suitable window
function, e.g.

H(w) = exp [_(w/wscale)%}
(11)

to split solution into high and
low frequency parts.
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Assuming EHS can be applied with usual form, outside the orbit:

_ . -\, .inh o EHS+ —iwt g,
bem(tr) = [ [H@)EL() + (1 = H@)EHS* ()] et
(12)
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Reconstructing Time Domain Field (External)

Imaginary Parts of wa(t, r=6M)

] t=tp(6M)
= = « External Windowed EHS
—— Inhomogeneous (—-1.0 = Mw = 1.5)
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m Work to understand how, if at all, we can apply EHS in
external region.

m Dealing with numerical issues.
O

m | ime domain reconstruction.

m SSF calculations and effect on scatter angle and time delay.

m Comparison with time-domain calculations (Oliver Long).
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