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Abstract: We identify a set of Hertz potentials for solutions to the vector wave equation on black hole spacetimes. The Hertz potentials yield Lorenz
gauge electromagnetic vector potentials that represent physical solutions to the Maxwell equations, satisfy the Teukolsky equation, and are related to
the Maxwell scalars by straightforward and separable inversion relations. Our construction, based on the GHP formalism, avoids the need for a
mode ansatz and leads to potentials that represent both static and non-static solutions. As an explicit example, we speciaise the procedure to
mode-decomposed perturbations of Kerr spacetime and in the process make connections with previous results.
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Motivation

Second order perturbations of Kerr spacetime

Calculate BCs for % } > Solve Oy?) = § ‘
’ S[0; h(V] > Calculate S < S[Tr®@)
A
[ S[62G] ‘

: hLlV) in Lorenz via reconstruction = ‘ hﬁ) in HR/BS via puncture scheme
(Toomani, Green, Wardell) L (Toomani, Zimmerman)
&
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Motivation

* Two paths to separable Lorenz gauge metric perturbations:

» Direct: Electromagnetic case provides a good intermediate
step to develop ideas which can then be applied to find
similar approaches for metric perturbations.

e Indirect: Gauge vector required to transform from radiation
gauge to Lorenz gauge satisfies the vector wave equation.

» Electromagnetic Lorenz-gauge self-force in Kerr.
e Advantages of Lorenz gauge:

e Self-force equation of motion and regularization well
understood.

* Avoid string-like singularities that appear in the radiation
gauge.

e Manifestly separable forms.
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EM Perturbations

Faraday tensor

Maxwell equations

V F¥ = JF & (BAY =2V VAPl = jP

Lorenz gauge Ingoing radiation gauge
ViA, =0 A, =0 [%%A),=0
(LA = J°

Outgoing radiation gauge

(ZA)* :=[JA*—R%AP | n%A,=0 n%(&A),=0
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EM Perturbations of Kerr il

1972

1978
1979

RO17

RO1Y¥

RO19

dsss. "‘—1

[Teukolsky, Phys. Rev. Lett. 29, 1114] Separable equations for Weyl scalars
[Chrzanowski, Phys. Rev. D11, 2042] Reconstruction of radiation gauge
[Kegeles and Cohen, Phys. Rev. D19, 1641] vector pOtential in vacuum

k

Lorenz gauge vector potential in
vacuum from separable functions

[Lunin, JHEP 12, 138]

[Frolov, Krtou$ and Kubizniak = n B% ] = 5%
Phys. Rev. D 97, 101701; Nucl. Phys. B 934, 7] A= Bag V'l (8p+ iphyp) = O
[Frolov, Krtous, Kubizniidk and Santos, Phys. fJ
Rev. Lett. 120, 231103]

“Polarization tensor” Not Teukolsky, but related
[Dolan, Phys. Rev. D 98, 104006] Non-static Lorenz gauge vector potential
[Dolan, Phys. Rev. D 100, 044044]

in vacuum from Teukolsky functions

Page 6/15



Teukolsky Formalism

Null tetrad
(L,n,m,m) [°n,=— mém, =1 8up = — 2 g + 2m,mmp

Geroch-Held-Penrose formalism grade.d algebra
ovariant version of Newman-Penrose

GHP Type {p, g} < Spin-weight and Boost-weight

s=2"1 p=L"4
. . 2 2-
Symmetries and discrete transformations
e n m® o m’ {p,qt > {-p,—q} " :m*om%{p,q} - {q,p}

Sp|n Coefficients Components of the connection for a non-coordinate basis
{3,1}) {3,-1} {1,1} {1,-1}
k=—-0IWFm*"V I, 6=-m'm"V, I, p=-mm"V,I, t=-n'm"V/I,

GHP directional covariant derivatives Spin/boost raising/lowering operators
{1,1} {-1,-1} {1,-1} {—1,1}
P =(I1V, —pe—qé), P ' =(nV,+pe +qé), 3= (m*Vo—-pB+qgf), & =(m*Vu+ps —qB)

Pirsa: 21060045 Page 7/15



Teukolsky Equation

Maxwell scalars Null tetrad components of Faraday tensor
{2,0} {0,0} {-2,0}

P :=Fp =T A, ¢ := %(an - an’z) =T A, $=F,=T5A
Decoupling operators
SoJ=L[@-2r—F) - (P—=20-p)Jm], S2J=1[- (@ —27" —F)J+ (D' =20 — §)Ja]
Wald identities . Dec"l”p'ed S

OT =808, 0,9,=88, 0OT,=8&
Teukolsky equations Separable
Opg=Sof, Oy =35/ ~
O:=(P-2sp—p)(P —p)—(d—2s7—7)(3 —7') + 1[(6s —2) — 45*]tho = (({) (R - 8)

/‘

Teukolsky-Starobinsky identiti€s kijing spinor coefficient [ = r — ia cos 8 in Ker]
P?¢2¢y = 8%y, P(%po = 0°C2py, [P’ + 7P'|¢2¢0 = [PD + 7'P]¢%¢,
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Radiation Gauge

Reconstruct the radiation gauge vector potential from the Maxwell scalars (CCK)

Ingoing Radiation Gauge

A, =0 [%&A), =

OQutgoing Radiation Gauge

AIRG 29{{(&T(DIRG) ]

n“A, =0 n%&A), =

AORG 2R [(‘ST(I)ORG) ]

«— ™ Separable = eag

bo = p2¢)IRG

lo=ma 1 rec
— —d“pIRG _ ZpIR
P2 5 5"

10—~ 1
¢U _ _562(1)01‘{(}_'_ 27,)01:{(3-

by = ;[p’a + rD/|GORG

by = _lpaq)ORG
2
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Lorenz gauge

e Aim to find a vector potential that:

1. Is the desired physical solution of the Maxwell
equations (i.e. it produces the expected ¢, and ¢,)

2. Satisfies the Lorenz gauge condition
3. Is a solution of the Lorenz gauge equations
4. |s constructed from a first order differential operator

acting on spin-weight +1 scalars (i.e. GHP type {2,0},
{_230}! {0!2} and {0!_2})
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Lorenz gauge

Maximum-spin-weight two-form satisfying Teukolsky & T-S

H 0 — H[aﬁ] Hlm = (I)O Hn‘m — (I)2

a

Generic ansatz

Al (6516, - (3327', —+ CZS’T_')(I)O,

A, = (cp, 0+ Cp, ™+ Cn,, T ) Do,
Apm = (lep + szp Tt Cmg P ’)@0,
A = (m, P + iy p + € p) Po,

Coefficients are type {0,0}: numeric constants and functions of &, &
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Lorenz gauge

Maximum-spin-weight two-form satisfying Teukolsky & T-S
Haﬁ — H[aﬁ] Hlm = (I)O Hn‘m — (I)2

Assume polynomial in C, é: — Two Lorenz-gauge vector potentials

(others obtained as linear combinations and/or compositions)

conformal_ Killing-Yano tensor
hag = (€ + Dy — (€ = Eriggmy, ﬁ

A7 =VICHEY | AP =WV (CH)
Z:07" = ¢, (R + )P = ¢,

LD ==y | AR+ P = ¢,

[Dolan]
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Lorenz gauge modes

| .
Ale’l = tasm@d,—dyg+icscld,—cotd (é’\/Zq)E)?l)
V2AX " )
I g ;
Al = —liasin00, + 0,y + icscf0,+ cotd (g\/gq,i%l)
2AX ¢ ]
1 r ;
AL = (@*+r*)d,— Ad, +ad, (g\/Kq)Og’l)
Ay 22 " ; i
1 b ;
Agl =———|@*+7r? d;+ Ao, +ao, (C\/K(DE‘Z’I)
A\22 " ]
by by
I(D%w SO L _Iq)%w 2
10 i

A = r2 = 2Mr + a? > =r?2+a’cos?@ {=r—iacos@

Page 13/15



Gravitational Case

* |nitial investigations suggest that there is no second order
operator that would act on the Weyl scalars to get a Lorenz
gauge metric potential.

* We are already doing something very similar in the
Schwarzschild gravitational case using Berndtson’s metric
reconstruction from Regge-Wheeler-Zerilli master functions
[Durkan].

* Many of the identities (including a Teukolsky equation and
Teukolsky-Starobinsky identities) have analogues in the
gravitational case. One possible complication is that the
Teukolsky-Starobinsky identities for the perturbed Weyl scalars
mix not only the scalars y and y;, but also their complex
conjugates.
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Conclusions

e Systematic approach to identifying Hertz potentials for the
vector wave equation.

* |dentified a set of solutions for the vector wave equation in
the form of separable operators acting on solutions of the
Teukolsky equation.

* No mode ansatz, works for arbitrary frequency (including
Z€ero).

* Restricted to homogeneous case (see talk by Stephen Green).

e Extension to gravity not yet clear, but reason for optimism.

Pirsa: 21060045 Page 15/15



