Title: Â Lorenz-gauge reconstruction for Teukolsky solutions with sources in electromagnetism

Speakers: Stephen Green

Collection: The 24th Capra meeting on Radiation Reaction in General Relativity

Date: June 09, 2021 - 10:30 AM

URL: http://pirsa.org/21060044

Abstract: Reconstructing a metric or vector potential that corresponds to a given solution to the Teukolsky equation is an important problem for self-force calculations. Traditional reconstruction algorithms do not work in the presence of sources, and they give rise to solutions in a radiation gauge. In the electromagnetic case, however, Dolan (2019) and Wardell and Kavanagh (2020) very recently showed how to reconstruct a vector potential in Lorenz gauge, which is more convenient for self-force. Their algorithm is based on a new Hertz-potential 2-form. In this talk, I will first show that the electromagnetic Teukolsky formalism takes a simplified form when expressed in terms of differential forms and the exterior calculus. This formalism makes the new Lorenz-gauge construction much more transparent, and it enables an extension to nonzero sources. In particular, I will derive a corrector term, related to the charge current, which when added to the vector potential gives a solution to the Maxwell equations with nonzero source. I will conclude by discussing prospects for extending to the gravitational case.

Pirsa: 21060044 Page 1/18

Lorenz-gauge reconstruction in electromagnetism with sources

Stephen R. Green Albert Einstein Institute Postdam

with V. Toomani, S. Hollands, ...

Capra Meeting Perimeter Institute / online June 9, 2021

Stephen Green

1

Pirsa: 21060044 Page 2/18

• Starting from Teukolsky solutions, use a Hertz potential to generate corresponding A_a or h_{ab} .

Maxwell

	Radiation gauge	Lorenz gauge
no sources		
sources		

Einstein

	Radiation gauge	Lorenz gauge
no sources		
sources		

2

Pirsa: 21060044 Page 3/18

• Starting from Teukolsky solutions, use a Hertz potential to generate corresponding A_a or h_{ab} .

Maxwell

	Radiation gauge	Lorenz gauge
no sources	✓ CCK (1970s)	
sources		

Einstein

	Radiation gauge	Lorenz gauge
no sources	✓ CCK (1970s)	
sources		

2

Pirsa: 21060044 Page 4/18

• Starting from Teukolsky solutions, use a Hertz potential to generate corresponding A_a or h_{ab} .

Maxwell

	Radiation gauge	Lorenz gauge
no sources	✓ CCK (1970s)	✓ Dolan (2019), Wardell, Kavanagh (2020)
sources	√ Toomani, Hollands (2021)	This talk

Einstein

	Radiation gauge	Lorenz gauge
no sources	✓ CCK (1970s)	×
sources	✓ Green, Hollands, Zimmerman (2020)	×

2

Pirsa: 21060044 Page 5/18

- Differential p-form $\omega_{a_1...a_p}=\omega_{[a_1...a_p]}$
 - totally antisymmetric
- Wedge product $(\alpha \wedge \beta)_{ab} = 2\alpha_{[a}\beta_{b]}$
 - · antisymmetrized product
- Exterior derivative $(d\omega)_{ba_1...a_p} = (p+1)\nabla_{[b}\omega_{a_1...a_p]}$
 - antisymmerized derivative; $d^2 = 0$
- Hodge dual $(*\alpha)_{abc} = \epsilon_{abc}^{d} \alpha_d$
 - ** = ± 1
- Co-differential $\delta = *d*$
 - divergence; $\delta^2 = 0$

sephen Green

J

Pirsa: 21060044 Page 6/18

- Differential p-form $\omega_{a_1...a_p}=\omega_{[a_1...a_p]}$
 - totally antisymmetric
- Wedge product $(\alpha \wedge \beta)_{ab} = 2\alpha_{[a}\beta_{b]}$
 - · antisymmetrized product
- Exterior derivative $(d\omega)_{ba_1...a_p} = (p+1)\nabla_{[b}\omega_{a_1...a_p]}$
 - antisymmerized derivative; $d^2 = 0$
- Hodge dual $(*\alpha)_{abc} = \epsilon_{abc}^{d} \alpha_d$
 - ** = ± 1
- Co-differential $\delta = *d*$
 - divergence; $\delta^2 = 0$

- Electromagnetism
 - 2-form field F_{ab}
 - Maxwell equations

$$dF = 0$$

$$\delta F = j$$

• Maxwell potential 1-form A_a

$$F = dA$$

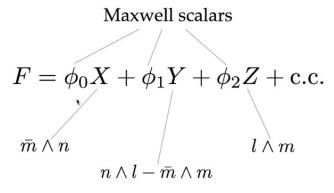
Automatically $dF = d^2A = 0$

3

Pirsa: 21060044 Page 7/18

Bivector basis

• Decompose F_{ab}



 (l, n, \bar{m}, m) is NP tetrad

- X, Y, Z are "anti-self-dual": *X = iX
- $\bar{X}, \bar{Y}, \bar{Z}$ are "self-dual": $*\bar{X} = -i\bar{X}$

1

Pirsa: 21060044 Page 8/18

Exterior calculus and Teukolsky

• At level of forms, Teukolsky decoupling operator is simply $\mathcal{S} \equiv \zeta^{-2} d\zeta^2$, $\zeta = \Psi_0^{-1/3}$

Teukolsky equations
$$\zeta = \Psi_2^{-1/3}$$

$$\zeta^{-2}d\zeta^2\delta F^A = X \left[\frac{1}{2}\mathcal{O}(\phi_0)\right]$$
 Fackerell-Ipser equation
$$+ Y \left[\frac{1}{2}\Theta^a\Theta_a\phi_1 + (B+B')\cdot\Theta\phi_1 + 2(B\cdot B')\phi_1 + 2\Psi_2\phi_1\right]$$

$$+ Z \left[\frac{1}{2}\mathcal{O}'(\phi_2)\right]$$

$$- \bar{X}\zeta^{-2} \left\{\delta'^2(\zeta^2\phi_0) + b^2(\zeta^2\phi_2) - 2[b\,\delta' - \tau'\,b + (b\,\tau') - (\delta'\,\rho)](\zeta^2\phi_1)\right\}$$

$$- \bar{Y}\zeta^{-2} \left\{(b'\,\delta' + \bar{\tau}\,b')(\zeta^2\phi_0) + (b\,\delta + \bar{\tau}'\,b)(\zeta^2\phi_2) - [\delta\,\delta' + b\,b' + \dots](\zeta^2\phi_1)\right\}$$

$$- \bar{Z}\zeta^{-2} \left\{b'^2(\zeta^2\phi_0) + \delta^2(\zeta^2\phi_2) - 2[b'\,\delta + \dots](\zeta^2\phi_1)\right\}$$

' (related to)

Teukolsky-Starobinski identities

5

Pirsa: 21060044 Page 9/18

Exterior calculus and Teukolsky

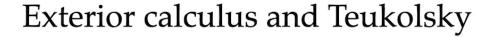
• At level of forms, Teukolsky decoupling operator is simply $\mathcal{S} \equiv \zeta^{-2} d\zeta^2$, $\zeta = \Psi_2^{-1/2}$

(related to)

Teukolsky-Starobinski identities

5

Pirsa: 21060044 Page 10/18



• With $F = dA \equiv \mathcal{T}A$, the sourced Maxwell equation is

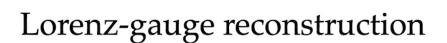
$$j = \delta F = \delta dA \equiv \mathscr{E}A$$

• In terms of operators on forms, the (electromagnetic) Wald identity is trivial:

• This (and its adjoint) can now be used in reconstruction.

6

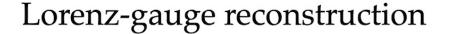
Pirsa: 21060044 Page 11/18



- Source-free case (Dolan, Wardell, Kavanagh) easy using exterior calculus:
 - Hertz 2-form ${\cal H}=\Phi_0 X+\Phi_2 Z$ $\longrightarrow A=\delta\zeta{\cal H}$
 - Automatically Lorenz gauge $\delta A = \delta^2 \zeta \mathcal{H} = 0$
 - Field strength F=dA GHP-Lie derivative $=d\delta\zeta\mathcal{H}$ $=\zeta^{-1}d\zeta^2\delta\mathcal{H}+X\pounds_\xi\Phi_0-Z\pounds_\xi\Phi_2+Y(C'\cdot\Theta\Phi_0+C\cdot\Theta\Phi_2)$ anti-self-dual

7

Pirsa: 21060044 Page 12/18



$$\begin{split} F &= dA \\ &= d\delta\zeta\mathcal{H} \\ &= \zeta^{-1}d\zeta^2\delta\mathcal{H} + X\pounds_{\xi}\Phi_0 - Z\pounds_{\xi}\Phi_2 + Y(C'\cdot\Theta\Phi_0 + C\cdot\Theta\Phi_2) \\ &\quad \zeta\mathcal{O} \qquad \text{anti-self-dual} \\ &\quad \mathcal{O}\mathcal{H} = \frac{1}{2}X\mathcal{O}(\Phi_0) + \frac{1}{2}Z\mathcal{O}'(\Phi_2) \\ &\quad - \bar{X}\zeta^{-2} \left[\eth'^2(\zeta^2\Phi_0) + \flat^2(\zeta^2\Phi_2) \right] - \bar{Z}\zeta^{-2} \left[\flat'^2(\zeta^2\Phi_0) + \eth^2(\zeta^2\Phi_2) \right] \\ &\quad - \bar{Y}\zeta^{-2} \left[(\flat'\,\eth' + \bar{\tau}\,\flat')(\zeta^2\Phi_0) + (\flat\,\eth + \bar{\tau}'\,\flat)(\zeta^2\Phi_2) \right] \end{split}$$

O

Pirsa: 21060044 Page 13/18

$$F = dA$$

$$= d\delta \zeta \mathcal{H}$$

$$= \zeta^{-1} d\zeta^2 \delta \mathcal{H} + X \mathcal{L}_{\xi} \Phi_0 - Z \mathcal{L}_{\xi} \Phi_2 + Y (C' \cdot \Theta \Phi_0 + C \cdot \Theta \Phi_2)$$

$$= \Delta \mathcal{H} = \frac{1}{2} X \mathcal{O}(\Phi_0) + \frac{1}{2} Z \mathcal{O}'(\Phi_2)$$

$$- \bar{X} \zeta^{-2} \left[\delta'^2 (\zeta^2 \Phi_0) + b^2 (\zeta^2 \Phi_2) \right] - \bar{Z} \zeta^{-2} \left[b'^2 (\zeta^2 \Phi_0) + \delta^2 (\zeta^2 \Phi_2) \right]$$

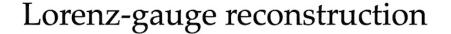
$$- \bar{Y} \zeta^{-2} \left[(b' \delta' + \bar{\tau} b') (\zeta^2 \Phi_0) + (b \delta + \bar{\tau}' b) (\zeta^2 \Phi_2) \right]$$

• If $(\Phi_0, -\Phi_2)$ satisfy TSI, then self-dual part of \mathscr{OH} vanishes, and F is anti-self-dual. Thus, F = -i * F = -i * dA, and

$$\delta F = *d * F = id^2 A = 0 \longrightarrow \text{solution}$$

8

Pirsa: 21060044 Page 14/18



$$\begin{split} F &= dA \\ &= d\delta\zeta\mathcal{H} \\ &= \zeta^{-1}d\zeta^2\delta\mathcal{H} + X\pounds_{\xi}\Phi_0 - Z\pounds_{\xi}\Phi_2 + Y(C'\cdot\Theta\Phi_0 + C\cdot\Theta\Phi_2) \\ &\zeta\mathcal{O} \qquad \text{anti-self-dual} \\ &\mathcal{O}\mathcal{H} = \frac{1}{2}X\mathcal{O}(\Phi_0) + \frac{1}{2}Z\mathcal{O}'(\Phi_2) \\ &- \bar{X}\zeta^{-2}\left[\delta'^2(\zeta^2\Phi_0) + b^2(\zeta^2\Phi_2)\right] - \bar{Z}\zeta^{-2}\left[b'^2(\zeta^2\Phi_0) + \delta^2(\zeta^2\Phi_2)\right] \\ &- \bar{Y}\zeta^{-2}\left[(b'\delta' + \bar{\tau}\,b')(\zeta^2\Phi_0) + (b\delta + \bar{\tau}'\,b)(\zeta^2\Phi_2)\right] \end{split}$$

• If $(\Phi_0, -\Phi_2)$ satisfy TSI, then self-dual part of \mathscr{OH} vanishes, and F is anti-self-dual. Thus, F = -i * F = -i * dA, and

$$\delta F = *d * F = id^2 A = 0 \longrightarrow \text{solution}$$

• Consistent with inversion relations $\ \, \mathbf{L}_{\xi}\Phi_0 = \phi_0 \,$

$*$
 $\mathbf{L}_{\xi}\Phi_{2}=-\phi_{2}$

8

Pirsa: 21060044 Page 15/18

- Suppose we have a Maxwell solution (F, j).
- Hertz potential stays the same

$$\mathcal{H} = \Phi_0 X + \Phi_2 Z$$

• Potential picks up a corrector 1-form

$$A = \delta \zeta \mathcal{H} + G$$

Inversion relations

$$egin{align} \mathbb{L}_{\xi}G_n &= \zeta j_n \ \mathbb{L}_{\xi}G_0 &= \phi_0 \ \mathbb{L}_{\xi}G_l &= -\zeta j_l \ \mathbb{L}_{\xi}G_m &= -\zeta j_m \ \mathbb{L}_{\xi}G_{ar{m}} &= \zeta j_{ar{m}} \ \end{array}$$

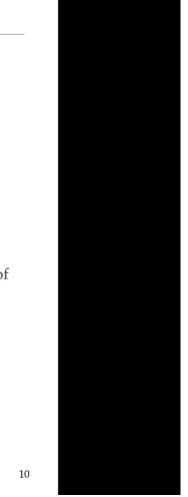
• Similar (but more involved) calculation to source-free case.

9

Pirsa: 21060044 Page 16/18

- Nonzero charge current *j* can be included as a source for Lorenz gauge reconstruction in electromagnetism.
 - Corrector is related to *j* via time derivatives.
- Differential forms notation very useful in calculations.
 - Next steps: Other Lorenz gauge constructions. (Barry's talk)
 - **Next steps:** Gravitational case. Can the formalism be adapted? Take bivector components of Weyl tensor?
 - Next steps: Point particle. Reconstruct field.

. . .



- Nonzero charge current j can be included as a source for Lorenz gauge reconstruction in electromagnetism.
 - Corrector is related to *j* via time derivatives.
- Differential forms notation very useful in calculations.
 - Next steps: Other Lorenz gauge constructions. (Barry's talk)
 - **Next steps:** Gravitational case. Can the formalism be adapted? Take bivector components of Weyl tensor?
 - Next steps: Point particle. Reconstruct field.
- If successful, this should greatly simplify self-force calculations, by enabling use of Teukolsky equation in producing Lorenz-gauge metric perturbations.

10

