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Abstract: Within the framework of self force theory we compute the gravitational wave flux through second-order in the mass ratio for
quasi-circular compact binaries. Our results are consistent with post-Newtonian calculations in the weak field and we find they agree remarkably
well with numerical relativity simulations of comparable mass binaries in the strong field. We aso find good agreement for binaries with a spinning
secondary or aslowly spinning primary.
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Gravitational wave flux for compact binaries
through second-order in the mass-ratio
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Description of the binary and method

(my, 1) Ty = I
M=m +m,
€ = my/m,
g=mim,=1le
v = mym,/M>

Xi= Sz./mf*

Quasi-circular, spin-aligned binary with orbital frequency €2 and S;/m; < m,
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Description of the binary and method

(my, 1) iy = 13
M=m +m,
€ = m,/m
g=mim,=1/e
v = mym,/M?

o — Sz./mf‘

Quasi-circular, spin-aligned binary with orbital frequency € and S./m; < m

Two-timescale expansion: Bup = Lap+ Z [eh;[-;”(ﬁ) + ezhjf;"(ﬂ) e~ 4 O(e?)
m
Tensor spherical ;}nﬁ = ﬁR;; e—fmrﬁp}/h.’/;n
u aas a, um X,
harmonic decomposition: im |
0 plR _ _ 0 plP
Field equations EiﬂmRﬂm - EfﬂmRﬂm
in Lorenz gauge: E? R2R =25°GY — EO R*P —El Rl

ijlm” "jim ilm ijlm” " jim ijlm" jlm

See Miller and Pound, arXiv:2006.11263
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Gravitational wave flux for quasi-circular binaries

Decompose into spherical h(®) = h, (D) + ik, (D) = o 2 h,, (1) _,Y,,.(6, P) \
harmonics: i

Split into amplitude and phase: b, () = A, (t)effl)(!) A.®eR
m m ’

1 . .
Define the flux and frequency: F i = T | A, |2, w(t) = D,,(1)/2
V4

\

Define the separation: x=Mw &
In the weak field we have @ ~ Q and ¥ ~ x = (MQ)%?

32 .
where, e.g., FN () = ?xsyz ];13} F(x)=1

Cefine Newtonian-normalised flux: F (X)) =F ,m(x)/?"g;(x)

G‘Wite SF flux as: FF @) = VPF @) + 1P F (@) + 00
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Flux for a non-spinning binary with g = 10
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NR waveform: SXS:BBH:1107
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Flux for a non-spinning binary with g = 10
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NR waveform: SXS:BBH:1107
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Flux for a non-spinning binary with g = 1
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NR waveform: SXS:BBH:1132
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Flux for a non-spinning binary with g = 10
Higher modes: (I, m) = (3,3)
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NR waveform: SXS:BBH:1107
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Flux for a non-spinning binary with g = 10
Higher modes: (I, m) = (3,3)

Why does the second-order flux not compare well against NR for the (3,3)-mode?

243 243
.?71‘;’5;\’ = gyz(l — 41/) - Tx7(2p2 _ 91/3-}-41/4) 4 @(xlS/Z)

Compare this with the PN series for the (2,2)-mode:

3 32 128 8 (1913602 — 876911°+234041%) x7
GV =221 L 20 2550 — 107)a6 + — a2 + ( | ) +0 (x152)
5 105 5 6615

We can try a simple resummation to include some v">% information from the PN series

2 1SF 3G 2SF
VFE 4 3 F :
m m O(I/Z) g{;j:::,!eadmg

?.S'I",re.\'um —
Im PN, leading
‘Gfrhn

This ensures that F;?fnf’r““m =1+4+..
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Flux for a non-spinning binary with g = 10
Higher modes: (I, m) = (3,3)
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NR waveform: SXS:BBH:1107
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Scaling with the mass ratio

107°
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108l —— v* reference |
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Comparison made at X = 1/9. Can estimate third-order fluxes.
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Fluxes for spinning binaries

During the inspiral the primary’s spin will evolve by O(¢)

We can consistently the flux due to the spin so long as S;/m; S m

To facilitate comparison between SF and NR fluxes we define

Xi=(++y1-4v)/2

2
X, =1-X giﬁ,,.win(x) - Lgf?nf(x) e 2 &iyiig;;zin,i(x)
a; = X, =1

- We can compute .Ef?f”}};:”m from our second-order calculation. It is also
equal to the linear-in-spin Teukolsky flux

- The flux from a spinning secondary, 97}2;:””, is computed in Akcay+
(arXiv:1912.09461 **)

** see also: arXiv:2004.02654, 2101.04533
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Fluxes with a spinning secondary
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NR waveform: SXS:BBH:1436
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Conclusions and future work

¥ Waveforms

¥ Attach transition to plunge and ringdown

% Detailed comparisons with NR, PN and EOB
% Modelling IMRIs

3 Extension to eccentric orbits

¥ Extension to Kerr: radiation gauge and Lorenz gauge

~AWP—~ AN AN AWM
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