Title: Progress toward post-adiabatic waveforms

Speakers: Adam Pound

Collection: The 24th Capra meeting on Radiation Reaction in General Relativity

Date: June 09, 2021 - 8:00 AM

URL: http://pirsa.org/21060036

Abstract: LISA science will require EMRI waveforms that are accurate to first-post-adiabatic order, which in turn requires the calculation of second-order self-force effects. In this talk I describe a post-adiabatic waveform-generation framework and progress toward its implementation. This lays the groundwork for talks by Durkan, Warburton, Spiers, Leathers, Upton, and others.

Pirsa: 21060036 Page 1/19

Progress toward post-adiabatic waveforms

Adam Pound with Durkan, Flanagan, Green, Hinderer, Hollands, Leather, Miller, Moxon, Spiers, Toomani, Upton, van de Meent, Warburton, Wardell, and Zimmerman

24th Capra Meeting, Perimeter Institute

9 June 2021

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 1/11

9 June 2021

1/11

Pirsa: 21060036 Page 2/19

What's what? [Hinderer and Flanagan 2008]

0

• asymptotic expansion in $\epsilon \sim m/M$

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h_{\mu\nu}^1 + \epsilon^2 h_{\mu\nu}^2 + \dots$$

 \bullet on inspiral timescale $t\sim 1/\epsilon$, the gravitational wave phase has an expansion

$$\varphi = \frac{1}{\epsilon}\varphi_0 + \varphi_1 + O(\epsilon)$$

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 2/11

9 June 2021

What's what? [Hinderer and Flanagan 2008]

Adiabatic order

determined by

lacktriangle averaged dissipative piece of F_1^μ

Post-adiabatic order

determined by

- averaged dissipative piece of F₂^µ
- conservative piece of F_1^μ
- oscillatory dissipative piece of F_1^μ

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

ullet on inspiral timescale $t\sim 1/\epsilon$, the gravitational wave phase has an expansion

$$\varphi = \frac{1}{\epsilon} \varphi_0 + \varphi_1 + O(\epsilon)$$

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 2/11

9 June 2021

2/11

Pirsa: 21060036 Page 4/19

Modelling IMRIs and similar-mass binaries

- 2SF results would fully fix 5PN dynamics and 6PM dynamics [Bini, Damour, Geralico 2019]
- also can use SF to directly model IMRIs (at least in some regions of parameter space)

Binary parameter space

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 3/11

9 June 2021

3/11

Pirsa: 21060036 Page 5/19

Modelling IMRIs and similar-mass binaries

- 2SF results would fully fix 5PN dynamics and 6PM dynamics [Bini, Damour, Geralico 2019]
- also can use SF to directly model IMRIs (at least in some regions of parameter space)

Binary parameter space

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 3/11

9 June 2021

3/11

Pirsa: 21060036 Page 6/19

Second-order self-force theory [AP, 2012–] [AP and Miller, 2014]

• skeletonization: small object $\rightarrow_{\mathbb{Q}}$ moving puncture:

$$\delta G_{\mu\nu}[h^{\mathcal{R}^{1}}] = -\delta G_{\mu\nu}[h^{\mathcal{P}^{1}}]
\delta G_{\mu\nu}[h^{\mathcal{R}^{2}}] = \delta^{2} G_{\mu\nu}[h^{1}, h^{1}] - \delta G_{\mu\nu}[h^{\mathcal{P}^{2}}]
\frac{D^{2}z^{\mu}}{d\tau^{2}} = -\frac{1}{2}(g^{\mu\nu} + u^{\mu}u^{\nu})(g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}^{\delta}})(2h_{\delta\beta;\gamma}^{\mathcal{R}} - h_{\beta\gamma;\delta}^{\mathcal{R}})u^{\beta}u^{\gamma}$$

• puncture diverges at worldline z^{μ} :

$$h_{\mu\nu}^{\mathcal{P}1} \sim \frac{m}{|x-z|} + \dots$$

$$h_{\mu\nu}^{\mathcal{P}2} \sim \frac{m^2}{|x-z|^2} + \frac{mh^{R1}}{|x-z|} + \dots$$

• solve for residual fields $h^{\mathcal{R}n}_{\mu\nu}=h^n_{\mu\nu}-h^{\mathcal{P}n}_{\mu\nu}$

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 4/13

9 June 2021

Typical approach at first order

- geodesic orbit. System parameters $J_A = \{ \overset{\mathfrak{G}}{\mathcal{E}}, \mathcal{L}, \mathcal{C} \}$ $(+\{M,S\})$
- discrete Fourier series

$$h_{\mu\nu}^{1} = \sum_{k^{A}} h_{\mu\nu}^{1,\omega_{k}}(J_{A}, r, \theta, \phi) e^{-i(k^{r}\Omega_{r} + k^{\theta}\Omega_{\theta} + k^{\phi}\Omega_{\phi})t}$$

evolution

$$\frac{d\varphi_A}{dt} = \Omega_A(J_B)$$
 and $\frac{dJ_A}{dt} = 0$

 $\varphi_A = \Omega_A t$ are action angles

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 5/11

9 June 2021

Two-timescale expansion

[AP and Wardell, 2021] [Flanagan, Hinderer, Moxon, AP (in prep)]

- system parameters $J_A = \{\mathcal{E}, \mathcal{L}, \mathcal{C}, \delta M, \delta S\}$ $(+\{M, S\})$
- two-timescale expansion

$$h_{\mu\nu}^{n} = \sum_{k^{A}} h_{\mu\nu}^{n,\omega_{k}}(J_{A}, r, \theta, \phi) e^{-i(k^{r}\varphi_{r} + k^{\theta}\varphi_{\theta} + k^{\phi}\varphi_{\phi})}$$

evolution

$$\frac{d\varphi_A}{dt} = \Omega_A(J_B) \quad \text{and} \quad \frac{dJ_A}{dt} = \epsilon f_A^{(1)}(J_B) + \epsilon^2 f_A^{(2)}(J_B) + O(\epsilon^3)$$

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 6/11

9 June 2021

6/11

Pirsa: 21060036 Page 9/19

Field equations

- idea: $\partial_t h^n \to (\omega_k + \epsilon \hat{J}^B \partial_B) h_{\mu\nu}^{n,\omega_k} (J_A,r,\theta,\phi)$
- phases factor out of equations

$$\delta G[h^1] = T^1$$

$$\delta G[h^{\mathcal{R}2}] = \delta^2 G[h^1, h^1] - \delta G[h^{\mathcal{P}2}]$$

we need NITs before solving 2SF field equations

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 7/11

9 June 2021

7/1

Pirsa: 21060036 Page 10/19

Field equations

- idea: $\partial_t h^n \to (\omega_k + \epsilon \dot{J}^B \partial_B) h^{n,\omega_k}_{\mu\nu}(J_A,r,\theta,\phi)$
- phases factor out of equations

$$\delta G_{\omega_k}[h^1_{\omega_k}] = T^1_{\omega_k}$$

$$\delta G_{\omega_k}[h_{\omega_k}^{\mathcal{R}2}] = \delta^2 G_{\omega_k}[h_{\omega_{k'}}^1, h_{\omega_{k''}}^1] - \delta G_{\omega_k}[h_{\omega_k}^{\mathcal{P}2}] + \dot{J}_{(\mathbb{Q})}^B \partial_B h_{\omega_k}^1$$

• we need NITs before solving 2SF field equations

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 7/11

9 June 2021

Page 11/19

Field equations

- idea: $\partial_t h^n \to (\omega_k + \epsilon \dot{J}^B \partial_B) h^{n,\omega_k}_{\mu\nu}(J_A,r,\theta,\phi)$
- phases factor out of equations

$$\delta G_{\omega_k}[h^1_{\omega_k}] = T^1_{\omega_k}$$

$$\delta G_{\omega_k}[h_{\omega_k}^{\mathcal{R}2}] = \delta^2 G_{\omega_k}[h_{\omega_{k'}}^1, h_{\omega_{k''}}^1] - \delta G_{\omega_k}[h_{\omega_k}^{\mathcal{P}2}] + \dot{J}_{(0)}^B \partial_B h_{\omega_k}^1$$

we need NITs before solving 2SF field equations

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 7 / 11

9 June 2021

7 / 11

Pirsa: 21060036 Page 12/19

Wave generation

- compute amplitudes $h^{1,\omega_k}(J_A)$, frequencies $\omega_A(J_B)$, and driving forces $f_A(J_B)$ across J_A space
- \bullet generate waveform $\sum_{k^A} h^{1,\omega_k}(J_A) e^{-ik^A \varphi_A}$ by solving

$$\frac{d\varphi_A}{d\tilde{t}} = \frac{1}{\epsilon} \Omega_A(J_B)$$

$$\frac{dJ_A}{d\tilde{t}} = f_A^{(0)}(J_B) + \epsilon f_A^{(1)}(J_B) + O(\epsilon^2)$$

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 8/11

9 June 2021

Example: quasicircular orbits [AP, Wardell, Warburton, Miller, 2019]

• parameters: $J_A = \{\Omega, \delta M, \delta S\}$

• field: $h \sim \sum_{nlm} \epsilon^n h_{\omega_m lm}^n (J_A, r) e^{-im\phi_p} Y_{lm}$

• phase: $\phi_p = \int \Omega \, dt = \frac{1}{\epsilon} \int \Omega d\tilde{t}$

ullet frequencies: $\omega_m=m\Omega$

- the simple test case
- that will never die

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 9/11

9 June 2021

9/11

Pirsa: 21060036 Page 14/19

Example: quasicircular orbits [AP, Wardell, Warburton, Miller, 2019]

• parameters: $J_A = \{\Omega, \delta M, \delta S\}$

• field: $h \sim \sum_{nlm} \epsilon^n h_{\omega_m lm}^n (J_A, r) e^{-im\phi_p} Y_{lm}$

• phase: $\phi_p = \int \Omega \, dt = \frac{1}{\epsilon} \int \Omega d\tilde{t}$

• frequencies: $\omega_m = m\Omega$

- the simple test case
- that will never die

Adam Pound (24th Capra Meeting)

Progress toward post-adiabatic waveforms 9/11

9 June 2021

Pirsa: 21060036 Page 16/19

Pirsa: 21060036 Page 17/19

Road to Kerr (phase 2)

Quasicircular orbits in Kerr, Teukolsky

New problem:
$$h^{(1)}_{\mu\nu} = h^+_{\mu\nu} \theta(r-r_p) + h^-_{\mu\nu} \theta(r_p-r) + h^0_{\mu\nu} \delta(r-r_p)$$

Pirsa: 21060036 Page 18/19

Summary • two-timescale expansion provides efficient framework for rapid waveform generation results slowly arriving for quasicircular orbits in Schwarzschild • extension to eccentric orbits also looks feasible. See 2020 talk by B. Leathers we're on the bumpy road to Kerr

Pirsa: 21060036

9 June 2021

0

Progress toward post-adiabatic waveforms 11/11

Adam Pound (24th Capra Meeting)