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Abstract: Since the advent of (relativistic) astrophysics it has been one of the most important tasks to study the motion of freely faling particles,
both from a purely academic and an observational point of view. In this presentation | review the solution methods for the equations of motion of
particle-like objects and light within a wide variety of spacetimes. Moreover, we take a closer look on the importance of special orbits for
phenomena like black hole shadows or accretion discs.
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Compact astronomical objects
like black holes and neutron stars
generate extremely strong
gravitational fields.

Informations about strong
gravitational fields can
substantially increase our
knowledge about the nature of
gravitation.

Images: artist's view of a black hole and of PSR J0348+0432. C,/
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Information about compact objects
<> electromagnetic radiation and gravitational waves

Both require knowledge about the motion of objects/light

5  Introduction | |
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Generally described by the field equation

log, (/M) Here

iF : Einstein(-Maxwell) or more
general

Post-Newtonian
Theory

assume extreme mass ratios

(compactness)

o leading order geodesic term +
some inner structure
(charge/spin)

1 1 1 1 1 oz (m )
log, (m, /m)

o 12 3 4 exact analytical methods

mass ratio

Geodesic motion also covers (to leading order):
propagation of electromagnetic signals & clocks in (strong) gravity fields

C/
Introduction ZARM
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Test particle motion (and beyond)
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Assume basic symmetries
stationarity — conserved energy
axial symmetry — conserved angular momentum

Metric in Boyer Lindquist coordinates
= 0\2 0,7 2 2 2
g = goo(dz”)” + 2g0pdz"do + gpedd” + geedd” + grrdr
Equations from energy and angular momentum conservation

0 — Egss — Lgog u® — Lgoo + Egos
93@ — 90094¢ 9009p¢ — 9(2)¢

From normalisation g, u"u” = —e we then find

Ezgd)(j) -+ 2ELQUQ -+ LQQOQ

—e = grr(u")? + goo(u’)* + 5
994900 — 9o

C/
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Equation separates <+ existence of a fourth constant

Gab fab( )+gab(9)
966900 — Gos F(r)+G(9)
grr = (F(r) + G(0)) f;(r),
gge = (F'(r) + G(0))gs(0)

for ab = 00, 00, p¢ and some functions f.p, 9up, fr» 90, F, G.

define a new parameter A\ (‘Mino time’) by dr = (F(r) + G(6))dA

2

(%) =&, 0 = @,(r) + 9(0).
2

(%) =0(0), j—i =T (r) + To(9)

C/
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Existence of fourth constant rather special

Kerr-Newman-NUT-de Sitter
some higher and lower dimensional spacetimes
some regular 'black holes’

some parametrised spacetimes

Generally problematic
existence of ‘hairs’
perturbations from the environment
black hole imposters; etc.
generally chaotic motion appears

Test particle motion (and beyond)
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dx d
= R(x,+/P(x)) mostcommonly o Pir)
dy dA
Algebro-geometric methods (special cases)

P of order 1 or 2: elementary functions; Kepler problem

- P of order 3 or 4: elliptic functions; Kerr-Newman-NUT spacetimes

ODE

General approach

Reduce ODE to a standard form by some
substitutions

write down the solution!

Available standard forms include

» Jacobi functions sn, cn, dn; integrals I, E, 11
Weierstrass functions g, ¢’; integral o
included in all major CAS systems (Mathematica, Maple) B

Test particle motion (and beyond) ZARM
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Generally P of order 2g + 1 or 2g + 2
(Examples g = 2: Kerr-Newman-NUT-de Sitter spacetimes)

- functions need to have 2g periods (for g > 1)
Kleinian sigma functions/Riemann theta functions

dimensional reduction necessary
(restriction to subalgebra, theta-divisor)

Explicit analytical solutions possible in all Petrov type D spacetimes with
separable equations of motions!

Test particle motion (and beyond) ZARM
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MPD equations, pole-dipole approximation (from V#1},,, = 0)

Dp 1

dTa = _§Rabcdub86da
DS

d,?_ _ paub o pbua’

+ Spin Supplementary Condition (SSC) «+ choice of reference worldline

Particular setup
Kerr spacetime, equatorial plane, (anti-)aligned spins
SSC S%p, = 0 (ZAMO observer)
to all orders in the spin
results in ODE's of hyperelliptic type, explicitly analytical solvable

C/
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- The radial motion is periodic,
r € [rp, Tal

The polar motion is periodic,
0 = [Qmina 6"mz—m}

dr\ 2 do\?
F — | =du =] =8
rom (d)\) R (d)\) ©

Radial period A,: r(A+ Ar) =r()), A, =2 [* & 4 T, =

Tp E
Polar period Ag: (X + Ag) = 0(N\), Ag =2 ]93:‘1" \‘je_ Tog=2
C/
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For bound orbits outside the horizons:
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©, t, and 7 are not periodic

can be expressed as a linear function
in A 4 periodic oscillations

Ansatz: p(A) = T A+ @7, + @Y
T, infinite A—average

Analogously: 7(X) = T,\+ osc,;
t(A) = T¢ A+ osc.

A note of care
parametrisation by fundamental frequencies is not unique

Bounded motion ZARM
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Periapsis precession

100

» mismatch of radial and angular

~100 |

frequency wrt coordinate time

L _ X _ Yo

= (27 — A, T,)/P.

700 |

P, = A, Y, anomalistic period

Lense-Thirring effect

mismatch of polar and angular
frequency wrt coordinate time

Q=Qg—Qy, =27 —ANgY,)/ Py
Py = AyY; draconitic period

Bounded motion ZARM
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Frame dragging
induced by rotation

also called gravitomagnetism

Experimental tests
- Spin-orbit coupling (Lense-Thirring
effect): LAGEOS/LARES

Spin-spin coupling (Schiff effect):
Gravity Probe B

There is a less well known effect to test: gravitomagnetic clock effect

Bounded motion ZARM
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