Title: Self-consistent adiabatic inspiral and transition motion

Speakers: Lorenzo Küchler

Collection: The 24th Capra meeting on Radiation Reaction in General Relativity

Date: June 07, 2021 - 11:00 AM

URL: http://pirsa.org/21060013

Abstract: We describe the transition to plunge of a point particle around the last stable orbit of Kerr at leading order in the transition-timescale expansion. Taking systematically into account all self-force effects, we prove that the transition motion is still described by the PainlevÃ \odot transcendent equation of the first kind. Using an asymptotically matched expansions scheme, we consistently match the quasi-circular adiabatic inspiral with the transition motion. The matching requires to take into account the secular change of angular velocity due to radiation-reaction during the adiabatic inspiral, which consistently leads to a leading-order radial self-force in the slow timescale expansion.

Self-consistent adiabatic inspiral and transition motion

Lorenzo Küchler

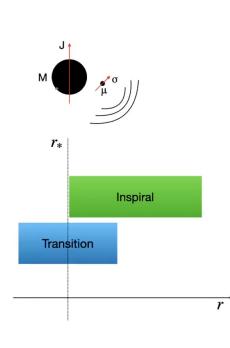
Based on arXiv 2102.12747 (with Geoffrey Compère at ULB)

24th Capra Meeting on Radiation Reaction in General Relativity

June 7, 2021

Introduction

- An EMRI within GR
- Kerr black hole (M, J) + compact object (μ , σ), $\eta = \mu/M$
- Neglect structure and spin of the secondary object
- Inspiral on quasi-circular and equatorial orbits
- At the ISCO the slow-timescale expansion of the inspiral breaks down
- A different treatment is needed which matches smoothly onto the slow-timescale expansions



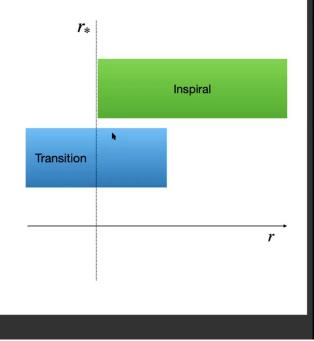
Matched asymptotic expansions

Treatment of the transition in small mass ratio regime [Ori & Thorne, 2000] and [Kesden, 2011]

- Leading-order transition neglecting self-force
- Quasi-circularity is inconsistent with normalisation of the 4-velocity

The plan:

- Leading-order (adiabatic) inspiral including all selfforce effects
- Leading-order transition including all self-force
 effects
- Matched asymptotic expansions in the overlapping region



Forced equatorial geodesics

- Trajectory $z^{\mu} = (t, r, \pi/2, \phi)$ angular velocity $\Omega = d\phi/dt$ and redshift $U = dt/d\tau = -g^{tt}e + g^{t\phi}\ell$
- The normalization of the 4-velocity and the radial geodesic equation

$$\left(\frac{dr}{d\tau}\right)^2 = e^2 - V, \quad \frac{d^2r}{d\tau^2} = -\frac{1}{2}\frac{\partial V}{\partial r} + f^r, \quad V \equiv 1 - \frac{2}{r} + \frac{\ell^2 + a^2(1 - e^2)}{r^2} + \frac{2(\ell - ae)}{r^3}$$

• The energy and angular momentum flux-balance equations $\frac{1}{3}$

$$\frac{d\ell}{d\tau} = f_{\phi}, \qquad \frac{de}{d\tau} = -f_t$$

• The orthogonality of the force with the velocity $f_{\mu}u^{\mu} = 0$

$$\Omega^{-1}\frac{de}{d\tau} - \frac{d\ell}{d\tau} = f_r \frac{dr}{d\tau} (\Omega U)^{-1}$$

Angular velocity and deviation from circular geodesic angular velocity

$$\Omega^{geo} = \frac{1}{r^{3/2} + a}, \quad \delta = (\Omega^{-1} - \Omega_{geo}^{-1}), \quad \rightarrow \quad \Omega = \frac{1}{r^{3/2} + a + \delta}, \qquad \Omega = \frac{2(ae - \ell) + r\ell}{r(r^2 + a^2)e + 2a(ae - \ell)}$$

The adiabatic inspiral

• Slow-timescale expansion for $X = (r, a, \delta, \Omega, U, e, \ell)$ where $\tilde{\tau} = \eta \tau$ is the slow proper time

 $X = X_{(0)}(\tilde{\tau}) + \eta X_{(1)}(\tilde{\tau}) + O_{\tilde{\tau}}(\eta^2)$

Consistently with the flux-balance equations and the orthogonality condition

$$\begin{split} f^{a} &= \eta \, f^{a}_{(1)}(\tilde{\tau}) + O_{\bar{\tau}}(\eta^{2}), \quad a = t, \phi \\ f^{r} &= f^{r}_{(0)}(\tilde{\tau}) + \eta \, f^{r}_{(1)}(\tilde{\tau}) + O_{\bar{\tau}}(\eta^{2}) \end{split}$$

• Equations at lowest order: algebraic equations

$$\begin{split} \Omega &= \frac{2(ae - \ell') + r\ell}{r(r^2 + a^2)e + 2a(ae - \ell')} & U_{(0)}, \ e_{(0)}, \ \ell_{(0)} \\ \left(\frac{dr}{d\tau}\right)^2 &= e^2 - V^{geo}, \qquad \frac{d^2r}{d\tau^2} + \frac{1}{2}\frac{\partial V^{geo}}{\partial r} = f^r & \longrightarrow & \Omega_{(0)} = \frac{1}{r_{(0)}^{3/2} + a_{(0)} + \delta_{(0)}} \\ U &= dt/d\tau = -g^{tt}e + g^{t\phi}\ell & f_{(0)}^r = \Delta U_{(0)}^2 \Omega_{(0)}^2 r_{(0)}^{-4} \delta_{(0)} (\delta_{(0)} + 2r_{(0)}^{3/2}) \end{split}$$

• Note on quasi-circularity: the inspiral is not described by a geodesic circular angular velocity

$$\frac{d\log r}{d\phi} = \frac{dr/d\tilde{t}}{rd\phi/d\tilde{t}} = \frac{\eta}{r\Omega U} \frac{dr}{d\tilde{\tau}} = O_{\tilde{\tau}}(\eta) \qquad \longrightarrow \qquad \delta_{(0)} \text{ is small throughout the inspiral}$$

Solution in the ISCO limit

The equations of motion:

•

$$\begin{split} \Omega^{-1} \frac{de}{d\tau} - \frac{d\ell}{d\tau} &= f_r \frac{dr}{d\tau} (\Omega U)^{-1} & \longrightarrow & \frac{da_{(0)}}{d\tilde{\tau}} = 0 & \longrightarrow & \text{the spin is constant at adiabatic order} \\ \frac{d\ell}{d\tau} &= f_{\phi}, \qquad \frac{de}{d\tau} = -f_t & & \qquad & \frac{dr_{(0)}}{d\tilde{\tau}} = \frac{r_{(0)}^2 A_{\delta}}{\delta_{(0)}(\delta_{(0)} + 2r_{(0)}^{3/2})} \left(e_{(0)} f_{(1)}^t - \ell_{(0)} f_{(1)}^{\phi} \right) \\ & & \frac{d\delta_{(0)}}{d\tilde{\tau}} = -\frac{A_{\delta}^{3/2}}{B_{\delta}} f_{(1)}^t + \frac{\sqrt{r_{(0)}} D_{\delta}}{2\Delta B_{\delta}} \frac{dr_{(0)}}{d\tilde{\tau}} \end{split}$$

As $\tilde{\tau} \to \tilde{\tau}_*$: solution in half-integer powers of $(\tilde{\tau}_* - \tilde{\tau})$. There are 3 free parameters to fix by matching with the transition

....

$$\begin{aligned} \ell_{(0)} - \ell_{(0)*} &= \kappa_{(0),2}^{*} (\tilde{\tau}_{*} - \tilde{\tau}) + \kappa_{(0),3}^{*} (\tilde{\tau}_{*} - \tilde{\tau})^{3/2} + O(\tilde{\tau}_{*} - \tilde{\tau})^{2} \\ \epsilon_{(0)} - e_{(0)*} &= \Omega_{(0)*} \kappa_{(0),2}^{*} (\tilde{\tau}_{*} - \tilde{\tau}) + e_{(0),3}^{*} (\tilde{\tau}_{*} - \tilde{\tau})^{3/2} + O(\tilde{\tau}_{*} - \tilde{\tau})^{2} \\ r_{(0)} - r_{(0)*} &= r_{(0),1}^{*} (\tilde{\tau}_{*} - \tilde{\tau})^{1/2} + O(\tilde{\tau}_{*} - \tilde{\tau}) \\ \delta_{(0)} &= \delta_{(0),2}^{*} (\tilde{\tau}_{*} - \tilde{\tau}) + O(\tilde{\tau}_{*} - \tilde{\tau})^{3/2} \xrightarrow{f_{(0)}^{r} = \delta_{(0),2}^{r} (\tilde{\tau}_{*} - \tilde{\tau}) + O(\tilde{\tau}_{*} - \tilde{\tau})^{3/2}} \\ f_{(0)}^{r} &= \Delta U_{(0)}^{2} \Omega_{(0)}^{2} r_{(0)}^{-4} \delta_{(0)} (\delta_{(0)} + 2r_{(0)}^{3/2}) \\ \end{cases}$$

The transition to plunge

- Transition-timescale expansion where $s=\eta^{1/5}(au- au_*)$ is the transition proper time

- The radial self-force and the deviation from geodesic circular angular velocity δ

$$f^{r}(s) = f^{r}_{[0]}(s)\eta^{4/5} + O_{s}(\eta), \quad f^{r}_{[0]}(s) = \epsilon_{*}R^{2}_{[0]}(s) - \zeta_{*}\xi_{[0]}(s)$$

$$\Omega = \frac{1}{r^{3/2} + a + \delta}, \quad \Omega = \frac{2(ae - \ell) + r\ell}{r(r^2 + a^2)e + 2a(ae - \ell)} \quad \longrightarrow \quad \delta = \delta_{[0]} \eta^{4/5} + O_s(\eta), \quad \delta_{[0]} = \frac{\pi_*}{\Delta_*^2} R_{[0]}^2(s) - \frac{A_*^{3/2} \Omega_{[0]*}}{\Delta_*} \xi_{[0]}(s)$$

Solution at early times

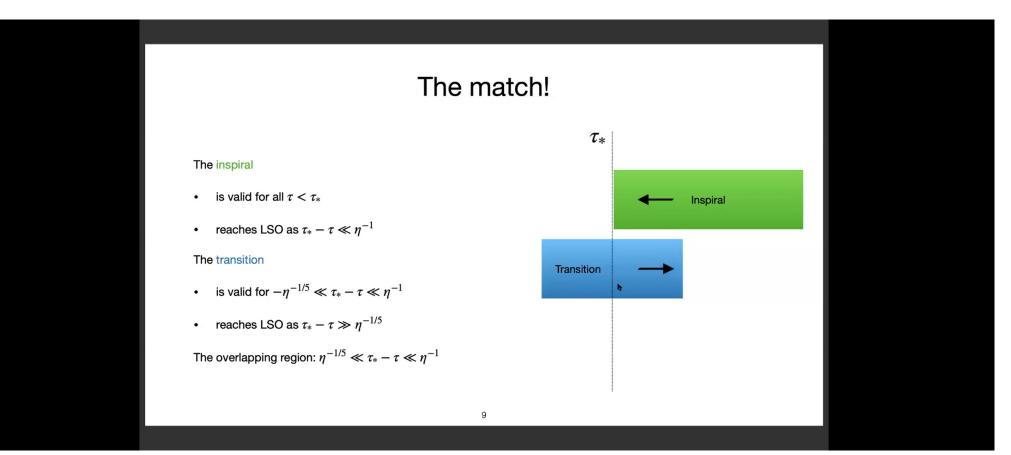
The equations of motion:

$$\begin{pmatrix} \frac{dr}{d\tau} \end{pmatrix}^2 = e^2 - V^{geo} \\ \frac{d^2r}{d\tau^2} + \frac{1}{2} \frac{\partial V^{geo}}{\partial r} = f^r \\ f^r = \left[\left(e - \frac{1}{2} \frac{\partial V^{geo}}{\partial e} \right) \frac{de}{d\tau} - \frac{1}{2} \frac{\partial V^{geo}}{\partial \ell} \frac{d\ell}{d\tau} - \frac{1}{2} \frac{\partial V^{geo}}{\partial a} \frac{da}{d\tau} \right] \left(\frac{dr}{d\tau} \right)^{-1} \\ \frac{d}{ds} \left(Y_{[0]} - \frac{2\epsilon_*}{3\gamma_*} R_{[0]}^2 - \frac{2\kappa_*\zeta_*}{\gamma_*} R_{[0]} \right) = 2\kappa_* \frac{\beta_* - \zeta_*}{\gamma_*} R_{[0]}$$

• At lowest order in η : algebraic equations that fix $e_{[0]^*}$, $\ell_{[0]^*}$ and $a_{[i]} = 0$, i = 1,...6

• As $s \to -\infty$ asymptotic solution to the Painlevé transcendent: series in half-integer powers of $(\tilde{\tau}_* - \tilde{\tau})$

$$\begin{split} r(s) &= \sqrt{\frac{(\beta_* - \zeta_*)\kappa_*}{\alpha_* - \epsilon_*}} \sqrt{\tilde{\tau}_* - \tilde{\tau}} + r_{[0]}^* + \eta^{2/5}O(s^{-2}) + O_s(\eta^{3/5}) \\ \ell(s) &= \lambda_*(\tilde{\tau}_* - \tilde{\tau})^{3/2} + \kappa_*(\tilde{\tau}_* - \tilde{\tau}) + \ell_{[0]}^* + \eta^{6/5}O(s^{-1}) + O_s(\eta^{7/5}) \\ e(s) &= e_{[0],3}^*(\tilde{\tau}_* - \tilde{\tau})^{3/2} + \kappa_*\Omega_{[0]^*}(\tilde{\tau}_* - \tilde{\tau}) + e_{[0]^*} + \eta^{6/5}O(s^{-1}) + O_s(\eta^{7/5}) \\ \end{split}$$



The match!

The inspiral

The transition

$$r = r_{(0)*} + r_{(0),1}^{*} (\tilde{\tau}_{*} - \tilde{\tau})^{1/2} + h \cdot o .$$

$$r = \sqrt{\frac{(\beta_{*} - \zeta_{*})\kappa_{*}}{\alpha_{*} - \varepsilon_{*}}} (\tilde{\tau}_{*} - \tilde{\tau})^{1/2} + r_{[0]*} + h \cdot o .$$

$$\ell = \ell_{(0)*} + \kappa_{(0),2}^{*} (\tilde{\tau}_{*} - \tilde{\tau}) + \kappa_{(0),3}^{*} (\tilde{\tau}_{*} - \tilde{\tau})^{3/2} + h \cdot o .$$

$$\ell = \lambda_{*} (\tilde{\tau}_{*} - \tilde{\tau})^{3/2} + \kappa_{*} (\tilde{\tau}_{*} - \tilde{\tau}) + \ell_{[0]*} + h \cdot o .$$

• The matching fixes the free coefficients of the inspiral $r^*_{(0),1} = \sqrt{\frac{(\beta_* - \zeta_*)\kappa_*}{\alpha_* - \epsilon_*}}, \quad \kappa^*_{(0),2} = \kappa_*, \quad \kappa^*_{(0),3} = \lambda_*$

- Also the energy e and the deviation from circular geodesic angular velocity $\delta_{(0)}$ match

• The leading-order radial self-force close to the LSO:

$$f_{(0)}^{r} = \frac{\kappa_* \beta_*}{2(\alpha_* - \epsilon_*)} \left. \frac{\partial^2 f^r}{\partial r^2} \right|_{[0]^*} (\tilde{\tau}_* - \tilde{\tau}) + O_{\eta} (\tilde{\tau}_* - \tilde{\tau})^{3/2}$$

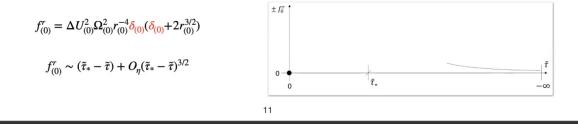
Page 10 of 13

Summary

- Exact consistent match of the adiabatic quasi-circular inspiral with the transition motion at leading order in the small mass ratio expansion
- The adiabatic inspiral with circular geodesic angular velocity does not match the solution in the transition regime

$$\Omega_{(0)} = \frac{1}{r_{(0)}^{3/2} + a_{(0)}} \to \Omega_{(0)} = \frac{1}{r_{(0)}^{3/2} + a_{(0)} + \delta_{(0)}}$$

• The adiabatic inspiral requires a zeroth-order (in the small mass ratio expansion) radial self-force $f_{(0)}^r$



Summary

- The Painlevé transcendent evolution in the transition remains true even in the presence of general self-force corrections
- It therefore controls the transition for any mass ratio (small mass ratio [Ori & Thorne, 2000], [Kesden, 2011], equal mass regime [Buonanno & Damour, 2000])

To do:

- Structure of the subleading match (and explicit match of the P1A inspiral)
- Understand $f_{(0)}^r$
- · Include eccentric and non-equatorial inspirals